

Finch 4 Alice:
A Visual Interface for

Programming the Finch Robot

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin-La Crosse

La Crosse, Wisconsin

by

Brad Fisher

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

April, 2017

Finch 4 Alice:
A Visual Interface for

Programming the Finch Robot

By Brad Fisher

We recommend acceptance of this manuscript in partial fulfillment of this
candidate’s requirements for the degree of Master of Software Engineering in
Computer Science. The candidate has completed the oral examination requirement
of the capstone project for the degree.

____________________________________ _______________________
David Riley Date
Examination Committee Chairperson

____________________________________ _______________________
Kasi Periyasamy Date
Examination Committee Member

____________________________________ _______________________
Kenny Hunt Date
Examination Committee Member

iii

ABSTRACT

FISHER, BRAD, C., Finch 4 Alice: A Visual Interface for Programming the Finch Robot,

Master of Software Engineering, April 2017, 100pp, David Riley, Kasi Periyasamy, Kenny

Hunt.

The project described in this manuscript investigates the concept of incorporating an

API for controlling the Finch robot into a visual programming environment, specifically

that provided by Alice 3.

Several initial approaches are outlined to accomplish the task, with one approach chosen

for implementation. Details of several of the technical challenges encountered are

provided, along with approaches and techniques employed to address them.

The final implementation resulted in the open source project Finch 4 Alice, which can

be found at http://finch4alice.com.

http://finch4alice.com/

iv

ACKNOWLEDGEMENTS

I wish to thank Dr. David Riley who provided the project concept and acted as project

advisor. Many thanks also to all of the individuals responsible for providing the Master of

Software Engineering program at the University of Wisconsin – La Crosse.

Appreciation is also extended to Carnegie Mellon University, the Carnegie Mellon

University CREATE Lab, and the Alice Project Team, for producing Alice and the Finch

robot.

I also extend heartfelt gratitude and dedicate this project to my wonderful wife, Nancy,

and my sons, Brayden and Orion, who have all been very patient and supportive.

To Alanna – our little angel in Heaven.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS ...v

LIST OF FIGURES ... viii

LIST OF TABLES ... xi

GLOSSARY ... xii

1. Introduction ..1

1.1 Alice 3... 1

1.2 The Finch .. 2

2. Project Background ..4

2.1 Option 1 – Acquire access to the Alice 3 source code 4

2.2 Option 2 – Utilize a different visual programming environment 4

Finch Dreams .. 5

CREATE Lab Visual Programmer for Finch .. 7

Scratch & Snap! .. 7

Blockly .. 8

2.3 Option 3 – Reverse-engineering of Alice 3 .. 9

3. Through the Looking Glass: Hacking Alice 3 ...10

3.1 ZIP Open a JAR .. 12

3.2 Overriding and Enhancing Classes in Java... 14

Bytecode Weaving with AspectJ .. 15

Replacing a Class in an Existing JAR File ... 16

Provide a new JAR.. 17

3.3 Decompilers Provide a Source ... 18

JD-GUI .. 18

vi

CFR (Class File Reader) ... 26

3.4 Compiling the Generated Sources .. 28

Determining the Compilation Class Path .. 28

File Organization and Script for Compilation .. 30

Effectiveness of Decompilers for Integrating Finch Support 31

3.5 It’s a Swinging Interface ... 33

Launching Alice 3 with Swing Explorer .. 33

Runtime Inspection of the Alice 3 GUI .. 36

4. Enhancing Alice ...38

4.1 Exposing New Procedures and Functions .. 38

Annotations, Exposed ... 49

Identifying a Suitable Test Subject ... 52

4.2 Communicating with the Finch .. 53

USB Debugging with USBPCap .. 55

Down the Rabbit Hole .. 56

4.3 The BirdBrain Robot Server ... 57

Operating System-specific Issues ... 60

Unsupported Finch Functionality ... 61

4.4 Supporting New Releases of Alice 3: Augmenting the classpath 62

5. Finch 4 Alice Deployment ...64

5.1 Supporting Multiple Operating Systems .. 64

5.2 Build Automation with Gradle ... 64

The Only Manual Dependency is the JDK ... 65

The Gradle Wrapper ... 65

Configuration through Code ... 65

Dependency Management ... 66

Plugin Support .. 66

Simple Command Line Interface .. 66

5.3 Cross-Platform Graphical Installer ... 67

vii

5.4 Platform-Specific Installer Options .. 70

Windows Executable Wrapper ... 71

Shell Script Wrapper ... 71

5.5 API Documentation .. 71

5.6 Automated Builds and Release Artifact Publishing 72

5.7 Acquiring Finch 4 Alice ... 72

6. Future Work ...74

6.1 Use in Introductory CS Courses ... 74

6.2 Maintenance of the Finch 4 Alice Open Source Project 74

6.3 Enhancements to the Finch Representation in Alice 3 75

6.4 Enhance Alice with Functionality Beyond Finch ... 75

REFERENCES ..77

Appendix ..83

Disclaimers ... 83

Finch 4 Alice BSD 2-Clause License ... 83

viii

LIST OF FIGURES

Figure 1: The Alice 3 visual programming interface .. 2

Figure 2: The Finch robot ... 3

Figure 3: Finch Dreams .. 6

Figure 4: CREATE Lab Visual Programmer for Finch .. 7

Figure 5: Snap! with Finch block definitions loaded .. 8

Figure 6: Blockly example interface ... 9

Figure 7: Alice 3 program folder contents .. 10

Figure 8: Folder view of “ast-0.0.1-SNAPSHOT.jar” opened in 7-Zip 13

Figure 9: Zip listing of “croquet-0.0.1-SNAPSHOT.jar” ... 14

Figure 10: Examining Alice 3 classes with JD-GUI ... 18

Figure 11: Result when bytecode cannot be interpreted ... 20

Figure 12: Example of duplicate variable declarations... 20

Figure 13: Example of an improperly decompiled for-each loop 21

Figure 14: Corrected Figure 13 code with proper for-each loop usage 21

Figure 15: Example of omission of required typecast .. 22

Figure 16: Example of missing return keyword ... 23

Figure 17: Example of invalid initialization of static properties 23

Figure 18: Example of incorrect assertion decompilation .. 24

Figure 19: Code from Figure 18 with corrected assertion .. 24

Figure 20: Example of incorrectly decompiled enum with abstract methods 25

Figure 21: Corrected decompilation of the code from Figure 20 25

Figure 22: CFR output for a method it could not decompile .. 27

Figure 23: Example of unintuitive code generated by CFR ... 28

Figure 24: JD-GUID output for same for-each loop illustrated in Figure 23 28

Figure 25: Windows batch syntax for deriving class path .. 30

ix

Figure 26: Bash script syntax for deriving class path ... 30

Figure 27: Windows batch file used to compile generated source files 31

Figure 28: The Swing Explorer interface.. 33

Figure 29: Java arguments embedded in Alice 3 native launcher executable 34

Figure 30: Batch file used for launching Alice 3.3 under Swing Explorer....................... 36

Figure 31: Swing Explorer with SportsCar say method selected 37

Figure 32: Subtree of Swing view hierarchy for procedure elements 37

Figure 33: Source of isInstanceFactoryDesiredForType from

StoryApiConfigurationManager ... 38

Figure 34: Decompiled source of the org.alice.ide.member.views.MethodsSubView class

... 40

Figure 35: org.alice.ide.member.MethodsSubComposite subclasses in Alice 3 41

Figure 36: Decompiled org.alice.ide.member.MemberTabComposite’s getSubComposites

method... 43

Figure 37: Decompiled source of the org.lgna.project.ast.JavaType methods initialization

... 45

Figure 38: Decompiled source of org.lgna.project.ast.JavaType’s handleMthd method . 46

Figure 39: Decompiled source of org.lgna.project.ast.AbstractMethod's "isFunction" ... 47

Figure 40: Decompiled source of org.lgna.project.ast.AbstractMethod's "isProcedure" . 48

Figure 41: Decompiled source of org.alice.ide.member.UserProceduresSubComposite’s

“isAcceptable” method ... 48

Figure 42: Decompiled source of org.alice.ide.member.MemberTabComposite’s

“isInclusionDesired” ... 48

Figure 43: Decompiled source of org.lgna.project.ast.JavaMethod’s “getVisibility” 49

Figure 44: Example of a MethodTemplate annotation used to prevent method exposure 51

Figure 45: Example of using Visibility.TUCKED_AWAY to prevent method exposure 51

Figure 46: Example of MethodTemplate annotation indicating method is to be exposed 51

Figure 47: Original decompiled source of org.lgna.story.STransport class 53

Figure 48: Example of Finch method added to STransport class 53

x

Figure 49: Wireshark capturing communication with a Finch robot using USBPcap 55

Figure 50: The BirdBrain Robot Server user interface ... 58

Figure 51: Example of a Windows install4j vmoptions file ... 63

Figure 52: Example of a Linux install4j vmoptions file ... 63

Figure 53: Example of executing Gradle 'createExe' task .. 67

Figure 54: The Finch 4 Alice graphical installer .. 68

Figure 55: GitHub Release artifacts of Finch 4 Alice v0.4... 72

xi

LIST OF TABLES

Table 1: Sampling of Alice 3 external library dependencies .. 11

Table 2: Listing of Alice 3 internal libraries ... 12

Table 3: Java arguments extracted from the Alice 3 launcher exe 35

Table 4: Annotation classes defined in the Alice codebase .. 50

Table 5: BirdBrain Robot Server Finch Sensor Value Services 60

Table 6: BirdBrain Robot Server Finch Control Services .. 60

Table 7: Gradle plugins used by Finch 4 Alice... 66

xii

GLOSSARY

3D (Graphics)

In computer graphics, the term 3D refers to the technique of projecting a virtual object

or scene onto a computer display in a way that presents the illusion of three-dimensionality.

Abstract Syntax Tree (AST)

A representation of the individual elements of a computer program often implemented

as a tree of nodes. Each node in the tree describes a specific piece of program syntax, such

as variable declarations, assignments, logical and mathematical operations, function

declarations, or method calls. An AST is often generated by a code parser and may be

generated as an intermediate step in compilation or interpretive script execution.

Accelerometer

A sensor for measuring acceleration forces. Accelerometers are commonly incorporated

into electronic devices such as cell phones or video game controllers, and are often used to

determine device orientation or if the user is shaking or tapping the device.

Alice 3

A freeware educational programming language with an integrated development

environment (IDE), produced by Carnegie Mellon University. Alice 3 uses a drag and drop

environment to create computer animations using 3D models, and places an emphasis on

object-oriented concepts and facilitating a full transition to the Java programming

language. [16]

xiii

Application Programming Interface (API)

A set of routine definitions, protocols, and tools for building software and applications.

An API specification can take many forms, but often include specifications for routines,

data structures, object classes, or variables. [68]

Decompiler

A decompiler, or reverse compiler, is a program that attempts to perform the inverse

process of the compiler: given an executable program compiled in any high-level language,

the aim is to produce a high-level language program that performs the same function as the

executable program. [21]

Finch

A small robot designed to inspire and delight students learning computer science by

providing them a tangible and physical representation of their code. [7] The Finch robot

was designed at the CREATE Lab at Carnegie Mellon University, and is currently

marketed by BirdBrain Technologies, LLC.

Graphical User Interface (GUI)

A graphical user interface utilizes the graphical capabilities of a computer to provide a

user interface for computer software. GUIs often employ images, symbols and visual cues

to facilitate user interaction in a point-and-click manner. Common methods for providing

user input include the use of keyboards, mice, pen devices, touch screens or other devices

for physical interaction.

Hyper Text Transfer Protocol (HTTP)

An application-level data transmission protocol used for exchanging data between client

and server applications. Both HTTP requests and responses consist of a request method, a

resource identifier, headers, and optional data.

xiv

Integrated Development Environment (IDE)

A suite of tightly-integrated development tools used for software development, often

consisting of a combination of an assistive code editor (with syntax-highlighting, code

completion and correction, or other features), compilers, static code analysis tools, runtime

debugger, and performance and memory profilers.

JAR

The JAR (Java ARchive) format is typically used to aggregate many Java class files and

associated metadata and resources (text, images, etc.) into one file to distribute application

software or libraries on the Java platform. [50]

Java

A popular, general-purpose, cross-platform programming language first released by Sun

Microsystems in 1995 and currently maintained by Oracle Corporation. Code written in

the Java language is typically compiled to class files containing Java bytecode, which can

be executed by a Java Virtual Machine.

Java Bytecode

The instruction set executed by the Java Virtual Machine. Java bytecode is similar in

principal to the instruction sets understood by most physical computer processors.

Java Classloader

A part of the Java Runtime Environment that dynamically loads Java classes into the

Java Virtual Machine.

Java Runtime Environment

A software package that contains what is required to run a Java program. It includes a

Java Virtual Machine implementation together with an implementation of the core Java

classes.

xv

Java Virtual Machine

An implementation of the Java Virtual Machine Specification [53], typically in software

form, for executing Java bytecode. A Java Virtual Machine exposes core system facilities

to Java applications in a consistent manner, regardless of the host operating system type or

CPU architecture, simplifying cross-platform development.

Light Emitting Diode (LED)

A semiconductor diode that emits light when conducting current. LEDs are often

preferred over incandescent lights in electronic devices due to their lower power

consumption and reduced heat output for comparable light intensity.

Open Source Software

Open Source Software (OSS) is software distributed with a license allowing access to its

source code, free redistribution, the creation of derived works, and unrestricted use. [1]

Reverse Engineering

Chikofsky and Cross [20] define Reverse Engineering as the process of analyzing a

software system to:

• Identify the system’s components and their interrelationships, and

• Create representations of the system in another form or at a higher level of

abstraction

For the context of this paper, it refers to attempting to divine the purpose, intent and

operational parameters of the Alice 3 software to determine a means to extend it to support

the Finch.

Swing

Swing is a subset of the Java Foundation Classes (JFC) which provides a framework for

creating graphical user interfaces. Several common component implementations, such as

buttons, text labels, and file selection dialogs are provided, and custom components can be

implemented using the Java language. Swing components are considered lightweight, since

xvi

they are implemented in Java and do not require native implementations for different

operating systems or hardware.

Visual Programming Language

A language which uses some visual representations to accomplish what would otherwise

have to be written in a traditional one-dimensional programming language. [56]

Programming is accomplished with visual expressions, generally spatial arrangements of

text and graphic symbols.

1

1. Introduction

Students often understand abstract ideas more effectively if they can relate them to their

own experiences with real-world objects. When teaching programming to entry level

students, it can be beneficial to present the concepts in a way that enables students to easily

visualize code execution. A desire to incorporate a more concrete link to the physical world

into the curriculum for CT100 at the University of Wisconsin – La Crosse has prompted

interest in developing a visual environment for programming and interacting with a device

capable of providing a physical representation of software execution.

Previous courses have successfully used Alice 3 [18], a free visual programming

environment created by Carnegie Mellon University, to introduce programming concepts.

Its straightforward graphical interface enables students to easily create syntactically correct

programs without requiring the students to be aware of the syntactical rules themselves. By

providing an environment designed to build 3-dimensional animations manipulated

through code, along with a migration path to the Java language, Alice 3 is suitable for entry

to intermediate-level programming students.

The CREATE Lab [19] at Carnegie Mellon University has also developed a simple,

interactive robot called the Finch [7]. Specifically designed for Computer Science student

education, the Finch can be used to provide a robotic device that is programmable by

students. It offers several sensors, output options, and mobility as a means of bridging the

gap between the virtual and physical realms.

By using both Alice 3 and the Finch robot together, the goal is to increase engagement

and remove some of the hurdles traditionally faced by students when learning to program.

1.1 Alice 3

The Alice 3 project offers a visual programming interface for programmatically

animating objects within a 3D rendered virtual environment. Figure 1 illustrates Alice 3,

2

which compared to its predecessor, Alice 2, provides a similar graphical environment and

visual code editor, but is designed to be much more object-oriented. Alice 3 also uses a

more Java-like language syntax, and supports features for exporting projects to the Java

language. As a result, Alice 3 is well-suited for use in introductory postsecondary

programming courses to familiarize students with common concepts before switching to

Java instruction. [24]

Figure 1: The Alice 3 visual programming interface

Through the use of simple drag-and-drop, interactive dialogs, and context sensitive menu

selections, Alice 3 provides a great deal of guidance to novice programmers. The interface

helps students avoid many common programming mistakes by ensuring code can only be

constructed in a syntactically correct manner. Removing some of these common barriers,

Alice 3 can be an effective tool to streamline the learning process [23,46].

1.2 The Finch

The Finch robot was designed to be a simple, cost-effective tool for educating students

in the art of programming [15,41,42,48]. Several Application Programming Interfaces

(APIs) are available to control the Finch from common programming languages, including

Java, Python, C/C++ and others. An HTTP-based server, known as the Birdbrain Robot

3

Server [8], is also available to allow integration with languages which do not have direct

API support, but do provide the ability to communicate over HTTP.

The Finch robot includes several on-board sensors, feedback mechanisms, and motors

(See Figure 2). Among its array of sensors are an accelerometer, a temperature sensor, light

sensors, and obstacle detection sensors. The Finch also supports output capabilities via a

full-color LED, an internal buzzer, and two independently controlled wheels to provide

mobility.

Image © BirdBrain Technologies, LLC.

Figure 2: The Finch robot

By combining the Finch’s capabilities, students can write computer software to interact

with the physical world in a rich and intuitive manner.

4

2. Project Background

To achieve the goal of integrating the Finch API [5] within a visual programming

environment, three main options were considered:

1. Acquire access to the source code and API documentation for Alice 3 from the

Alice team at Carnegie Mellon University.

2. Identify an alternative UI that has visual code editing capabilities similar to those

provided by Alice 3 and is extensible to support the Finch API.

3. Attempt to reverse-engineer the Alice 3 program to determine a way to integrate

the Finch functionality, without direct access to the source code.

2.1 Option 1 – Acquire access to the Alice 3 source code

While several sources [16,25,67], including the Alice 3 license [17], imply that Alice 3

is open source software, there is no known public source code repository from which to

acquire the Alice 3 source code for review or modification. Unsuccessful attempts had been

made prior to the commencement of this project to gain official access to the Alice 3 source

code from the Alice team at Carnegie Mellon University. As part of the initial phases of

this project, a new request was submitted to the team, again receiving a negative response.

Since we were unable to convince the Alice team to grant access to the source code for

Alice 3, this option was not a viable route.

2.2 Option 2 – Utilize a different visual programming environment

Several existing visual programming environments were evaluated as part of the

requirements-gathering phase of the project, with emphasis on the following criteria:

• The software must be open source and freely available for student use.

• The source code must be available through a public source code repository.

5

• The software must run under the Windows, Macintosh OS X, and Linux

operating systems.

• The software must provide a drag-and-drop visual programming interface.

• If Finch support is not yet available, the software must be extensible to add

support through an external plugin or by updating available source code to

interface with an existing Finch API [5] or the BirdBrain Robot Server [8].

• It must support standard object-oriented programming concepts, such as:

o Encapsulation through classes with properties and methods

o Inheritance of behavior and properties

• Support for intermediate to advanced language concepts should be provided.

o Lists / Arrays

o Recursion

o Strict data typing

o Parallel/concurrent execution paths

• The software must be capable of serving as a gateway or introduction to the Java

programming language. The ability to export projects directly to Java source code

is preferred.

Several software alternatives were considered during this phase, including Finch

Dreams, Finch Visual Programmer, Scratch/Snap! and Blockly.

Finch Dreams

Finch Dreams [6] is a variation of Alice 2.2 which has been extended to include a Finch

3D library object which can be added into the scene and that exposes methods to access

the Finch’s sensors and output devices. Figure 3 illustrates with a sample Finch Dreams

GUI.

6

Figure 3: Finch Dreams

Finch Dreams was the closest of all the evaluated software in terms of meeting the

evaluation goals and expectations. However, the Alice 2 environment on which Finch

Dreams is based primarily targets K-12 students and does not provide access to many of

the more advanced programming concepts that are desired for students in an entry level

postsecondary environment. Finch Dreams neither supports exporting projects into Java

code, nor does it expose students to object-oriented features such as inheritance and method

overloading.

Utilizing Finch Dreams as a source of insight for the project described in this paper was

considered, but was found to be of limited value. The Finch Dreams source code, like the

source code for Alice 3 itself, is not readily available for examination. Also, since Finch

Dreams is based on an old (circa 2011-12) version of Alice 2, it was deemed very probable

that the code base shared between it and Alice 3 had diverged substantially in the meantime.

During the course of the project research, source code [58] was found for Storytelling

Alice [38], a different fork of the Alice 2.2 source. Examination of the Storytelling Alice

source revealed a very large number of implementation differences between its source code

and that of Alice 3. The mechanism which Storytelling Alice uses to determine the methods

7

exposed to users for use in their own programs was found to be quite different than that for

Alice 3. Due to these great differences observed between Storytelling Alice and Alice 3, it

is very unlikely that the source code for Finch Dreams would be of much use for integrating

the Finch into Alice 3, even if it could be obtained.

CREATE Lab Visual Programmer for Finch

The CREATE Lab Visual Programmer (see Figure 4) for Finch [14] is an open source

visual programming tool developed by the CREATE Lab at Carnegie Mellon University,

the organization responsible for the development of the Finch itself.

Figure 4: CREATE Lab Visual Programmer for Finch

 Using the CREATE Lab Visual Programmer for Finch, one can indeed create a program

to control a Finch to interact with its environment. However, the design of the Visual

Programmer software is targeted at novice programmers, and as such does not provide

access to several desirable programming features. Lack of user-defined variables, an

inability to translate projects easily into Java code, and many other limitations prevented

this tool from being useful for the desired purposes.

Scratch & Snap!

Scratch [43] and Snap! [66] are both free, browser-based visual programming languages.

Scratch is a project of the Lifelong Kindergarten Group at the MIT Media Lab. Snap! is

presented by the University of California at Berkeley, and is a reimplementation of Scratch

8

with additional features added, such as procedures, lists, and continuations. Figure 5

demonstrates a Snap! screen capture with Finch block definitions.

Figure 5: Snap! with Finch block definitions loaded

Both Scratch and Snap! provide very similar environments in which to develop

programs. They both also have existing extensions for supporting interaction with a Finch.

However, neither provides a strictly-typed, object-oriented language, nor are they similar

enough to Java to ease the transition from the visual environment to a text-based IDE.

Blockly

Blockly [33] is a library created by Google for building visual programming editors. It

allows a developer to embed a visual programming interface into a web page or Android

application. A sample programming interface window from Blocky is shown in Figure 6.

The Blockly editor provides facilities to generate code from the visual representation into

several popular scripting languages, including Javascript, PHP, Python or Lua.

9

Figure 6: Blockly example interface

While the Blockly library appears to have some promise as a drop-in visual programming

editor control, and its browser-based implementation provides wide platform support, it

doesn’t support the object-oriented programming styles desired for the project. It also

appears to be focused more on supporting loosely typed scripting languages at this point,

and doesn’t provide typed variable declarations. For these reasons, Blockly was deemed

insufficient to meet the needs of the project.

2.3 Option 3 – Reverse-engineering of Alice 3

Since the source code for Alice 3 was not easily available through standard channels,

and no acceptable alternative software was found that met the desired requirements, only

one of the identified options remained. Some method of incorporating functionality into

Alice 3 to access the Finch would need to be determined. Attempting to modify the

software would require reverse-engineering and analysis using various decompilation and

introspection techniques to determine if and how the desired functionality could be added.

Chapter 3 details the approaches and tools used to accomplish this task.

10

3. Through the Looking Glass: Hacking Alice 3

The first task to determine the viability of enhancing Alice 3 with Finch support was to

gain an understanding of its internal workings. This was crucial to determining viable

options for incorporating new functionality into the existing program. Since the original

source code is not publicly available, more indirect methods of examining and

understanding the construction of the software was required.

Figure 7: Alice 3 program folder contents

Alice 3 is implemented in the Java language and its executable components are packaged

in a manner similar to most other Java projects. The source code is compiled to class files

containing Java virtual machine bytecode, and packaged into Java Archive (JAR) files.

Figure 7 shows the basic structure of the Alice 3 files.

Inside the Alice 3 program folder, these JAR files are organized into folders denoting

whether they are external 3rd party library dependencies, or were generated from the

original Alice 3 source code. External dependencies are placed in an “ext” subfolder, while

libraries specific to Alice 3 are deposited in a “lib” folder. An abbreviated selection of the

external library dependencies in the “ext” folder for Alice 3.3 are listed in Table 1.

11

Library Name Description

Atlassian Jira SOAP
client

For submitting issue reports to the Alice 3 Jira issue tracker

Google Guava Google Guava contains functionality such as collections, caching, primitives support,
concurrency libraries, common annotations, string processing, I/O, and so forth.
– https://github.com/google/guava

JMF MP3 Java MP3 player
– http://www.oracle.com/technetwork/java/javase/download-137625.html

Jogl2 Java OpenGL API binding
– http://jogamp.org/jogl/www/

MiG Layout Layout manager for Java Swing, SWT, and JavaFX 2
– http://www.miglayout.com/

Mmsc MM's Computing open source library for PPM, PGM, and PBM image serialization, and
color quantization algorithms

Vlcj Java bindings to VLC media player
– http://capricasoftware.co.uk/#/projects/vlcj

Table 1: Sampling of Alice 3 external library dependencies

Inside the “lib” folder are several other JAR files which contain Alice 3-specific classes.

Table 2 contains a full listing of these internal libraries, including the number of individual

class files contained within each. Based on only a quick analysis of the file names, these

libraries appear to include functionality for internationalization (i18n-0.0.1-

SNAPSHOT.jar), generating IDE views and components (alice-ide-0.0.1-SNAPSHOT.jar

and ide-0.0.1-SNAPSHOT.jar), graphics rendering (glrender-0.0.1-SNAPSHOT.jar), and

issue reporting (issue-reporting-0.0.1-SNAPSHOT.jar). However, the purpose of some of

the libraries is not as clearly expressed in their names. For example, the name “ast-0.0.1-

SNAPSHOT.jar” only provides three letters with which to divine its purpose, and “croquet-

0.0.1-SNAPSHOT.jar” is a curious name as well.

JAR File Name File Size Number of Classes

alice-ide-0.0.1-SNAPSHOT.jar 98 KB 34 Classes

ast-0.0.1-SNAPSHOT.jar 400 KB 204 Classes

croquet-0.0.1-SNAPSHOT.jar 857 KB 457 Classes

glrender-0.0.1-SNAPSHOT.jar 277 KB 128 Classes

i18n-0.0.1-SNAPSHOT.jar 173 KB 0 Classes

ide-0.0.1-SNAPSHOT.jar 6,845 KB 1,775 Classes

12

image-editor-0.0.1-SNAPSHOT.jar 53 KB 12 Classes

issue-reporting-0.0.1-SNAPSHOT.jar 23 KB 11 Classes

scenegraph-0.0.1-SNAPSHOT.jar 280 KB 203 Classes

story-api-0.0.1-SNAPSHOT.jar 18,986 KB 1,238 Classes

story-api-migration-0.0.1-SNAPSHOT.jar 101 KB 21 Classes

util-0.0.1-SNAPSHOT.jar 860 KB 583 Classes

Total 28,953 KB 4,666 Classes

Table 2: Listing of Alice 3 internal libraries

Since Alice 3 incorporates features of a code editor, compiler, and execution

environment, it might be guessed that “ast” refers to the abstract syntax trees commonly

used within compilers and interpretive execution environments to represent the structure

of the code. As far as “croquet” goes, a good guess would probably be that it is a reference

to chapter 8 of Lewis Carroll’s “Alice in Wonderland”, in which Alice plays a croquet

game with flamingo mallets and hedgehog balls.

While the above guesses may not be too illuminating, one great benefit of the fact that

Alice 3 is implemented in Java is that there are several readily available tools to facilitate

the examination of the JAR files and the class files contained therein. These tools can

provide much more insight than mere file name analysis. One such tool is the humble ZIP

file viewer.

3.1 ZIP Open a JAR

The JAR file format is a specialization of the format employed by the ZIP file format,

which is designed to provide lossless data compression of files and directory structure. A

JAR file has a specific organization to the compressed files within, but it’s still essentially

a ZIP file, and can be examined using the same tools that can be used on a ZIP. The next

analysis step was to use the program 7-Zip [54] to examine the contents of the JAR files to

see the classes and other files that are bundled within.

13

Figure 8: Folder view of “ast-0.0.1-SNAPSHOT.jar” opened in 7-Zip

By using 7-Zip to examine the “ast-0.0.1-SNAPSHOT.jar” file, as shown in Figure 8,

there is further evidence that it contains classes which, based on their file names, appear to

represent various aspects of the language syntax. These are exactly the kind of classes one

would expect to see in an abstract syntax tree implementation, and strengthens the

supposition that this JAR file contains functionality for an in-memory representation of the

source code in an Alice project. The library also appears as though it may provide for an

execution engine for evaluating the syntax tree as well.

14

Figure 9: Zip listing of “croquet-0.0.1-SNAPSHOT.jar”

As shown in Figure 9, examination of the “croquet-0.0.1-SNAPSHOT.jar” library also

reveals more of its secrets. In this library there appear to be classes related to various user

interface elements, such as dialogs, menus, single and multi-select lists, and many others.

While the listing of the classes don’t provide much insight into how these interface

components are used, it nonetheless provides a much higher level of detail into what the

croquet library is, and the inner workings of the Alice 3 user interface.

Using a tool such as 7-Zip to work with a JAR file’s contents not only exposes a great

amount of detail, it can also be used to update a JAR file to include new file or directory

entries, or to modify or remove existing files or directories. Such a technique is one of the

options detailed in section 3.2.

3.2 Overriding and Enhancing Classes in Java

Section 3.1 illustrated that it is relatively easy to inspect the contents of the JAR files and

gain access to the class and resource files contained therein. This provides a way to gain a

fair amount of insight into the organization of the Alice 3 application that would be useful

in modifying it to suit the project’s goals. In particular, it leads the way toward identifying

classes which may be useful targets for modification to incorporate new functionality.

15

However, to take advantage of that knowledge, we must also determine how such

modification can be best performed. The way in which the modifications are applied must

be easy for students to do on their own, and must not adversely affect the standard Alice 3

experience. Three different methods for incorporating changes into the Alice 3 runtime

environment were considered: Bytecode weaving, replacing classes in standard JARs, and

providing an additional JAR containing the substitute class implementations.

Bytecode Weaving with AspectJ

One powerful method identified as a candidate for modifying the behavior of an existing

Java class is to apply the concept of bytecode weaving. AspectJ [63] is an aspect-oriented

programming [39] (AOP) language and compiler suite that can be used to apply bytecode

weaving to an existing class. Two methods of bytecode weaving are supported by AspectJ:

1) Load time weaving [62]: Dynamically enhancing a class at runtime when the class is

loaded.

2) Binary weaving [61]: Performing bytecode weaving to the binary contents of an

existing class file, replacing the file with the modified version.

Applying bytecode weaving at load time requires either a Java agent to be loaded when

starting the JVM or that a custom class loader is used by the application. Specifying an

agent merely requires a new command line parameter be provided when launching Java

(e.g. -javaagent:pathto/aspectjweaver.jar), and thus can be done without modifications to

the Alice 3 classes. Likewise, the latter option of using a custom class loader is also

possible, as long as the new class loader is registered before any of the Alice 3 classes are

loaded. Such registration sequencing can be accomplished through tweaks to the Java

command line arguments by specifying a custom classpath to aspectjweaver.jar and

overriding the system class loader using the “java.system.class.loader” system property.

The “aj.bat” script installed with AspectJ provides one example of how that can be

achieved, though it would require modifications to support Alice 3.

While load time weaving does appear to be a possibility, it also imposes additional

requirements and complexity to implementation and deployment that could be avoided.

16

Performing binary weaving of a class’s bytecode removes the need to specify a custom

agent or class loader, since the class’s bytecode is modified prior to being loaded. However,

regardless of the method used to implement bytecode weaving with AspectJ, any classes

which are modified require access to the AspectJ runtime classes found in “aspectjrt.jar”.

Because of this dependency, the runtime must be provided in the classpath for the modified

application to operate correctly.

In addition to requiring the availability of AspectJ runtime classes, several other factors

led to bytecode weaving not being used in this project. AspectJ itself is a superset of the

Java language that adds the concepts of aspects, which are composed of pointcuts and

advices. These constructs provide a means to target specific points in a program and apply

new actions that should be taken. While these can be powerful in the right context, they

can also lead to code that may be difficult to maintain and understand. In particular, because

aspects allow the execution of new actions where they were not previously performed, they

can have an adverse impact when applied to an application that was not originally written

with the knowledge that such a modification would be made. So, despite having the

capability of incorporating the desired behavior into Alice 3, bytecode weaving was

determined to incur too high a cost and was not the final method used.

Replacing a Class in an Existing JAR File

As mentioned in 3.1, a utility such as 7-Zip can be used to update a JAR file and replace

files within it. Such a replacement could easily be used to incorporate one or more modified

class files into existing Alice 3 JARs to change or extend the existing functionality. The

approach itself is fairly straightforward and simple to achieve, and was used in the early

phases of the project. However, it does have some drawbacks, rendering it unsuitable for

long-term use.

One drawback is that any JAR that is modified to contain new classes would need to be

redistributed. Since each JAR file typically contains many classes, and most of them may

not require modification, it results in a larger dependency between the Alice 3 distribution

and the output of this project. Redistribution and maintenance of such JAR is likely to incur

17

a higher cost, as it would be more tightly coupled with the specific version of Alice 3 that

the original was obtained from.

It is possible that an existing JAR from an Alice 3 installation could be modified as part

of the installation process for the customized classes. Since the original JAR would contain

the unmodified classes, such an approach would permit distribution of only the classes

which were modified. However, it would also require that the installation process be

capable of modifying a JAR file, to either add classes or replace existing classes. A simpler

method that doesn’t require modification of any of the files distributed with Alice 3 is

preferable.

Provide a new JAR

During the course of the project, it became clear that the simpler the method for

incorporating new behavior was, the easier it would be for students to utilize the

enhancements and for a maintainer to keep the project up-to-date with future Alice releases.

The third method for updating a class’s behavior within Alice 3 accomplishes this by

leveraging the way in which the classpath is utilized when classes are loaded. When loading

a class for the first time, the standard Java class loader searches each individual component

of the classpath in the order they are listed. The first class file found that matches the

desired class’s package and name will be loaded into memory and used from that point

forward. Any class files in other locations within the classpath will be effectively ignored.

Since only the first matching class file is loaded, it is possible to “replace” an existing

class within a Java application by ensuring that the location containing a replacement class

file is injected into the classpath before the original. Thus, all that is necessary is to bundle

all classes that provide new behavior into a single JAR file and modify the classpath that

Alice 3 applies when it launches. Since this method limits the scope of the modifications

needed within the Alice 3 installation to a much smaller footprint than the other two

methods, it was the method chosen for implementation. While it does require updating the

classpath, it doesn’t require use of a non-standard compiler or set of runtime classes like

18

bytecode weaving does. It also does not require modification to existing Alice 3 JAR files,

thus reducing concerns with distribution and installation.

With a way to incorporate new behavior, the next step in the process is to determine

exactly which classes will need to modified, and apply updates to them. To facilitate such

modification, source code must first be derived from the binary class files, using a

decompiler.

3.3 Decompilers Provide a Source

A Java decompiler is a program capable of reading a Java class file, interpreting the Java

bytecode contained therein, and deriving a facsimile of the original source code that was

compiled to create the bytecode. The source code generated by the decompiler should then

be capable of being compiled with the Java compiler, once more generating bytecode

equivalent to the original class file. Thus a decompiler works in almost the exact opposite

manner of a compiler.

JD-GUI

Figure 10: Examining Alice 3 classes with JD-GUI

19

One such tool, JD-GUI, is a freely available open source user interface to the closed

source JD-Core Java decompilation library. JD-GUI provides a simple-to-use interface (see

Figure 10) for examining the decompiled source of classes within a JAR file or directory

tree. In addition to viewing decompiled source, JD-GUI also provides a simple method for

saving the decompiled source for all classes it finds. These properties seemingly position

JD-GUI as an ideal tool for deriving the Alice 3 sources from its class files. However, quite

a few shortcomings became apparent after attempts to use it for that purpose. Details of

several of these limitations are described in the following:

• Some bytecode could not be interpreted, resulting in error output in the generated

source. Figure 11 contains an example from the class org.lgna.project.

virtualmachine.VirtualMachine. Unfortunately, JD-GUI does not generate a

report summary file detailing where such instances occur, so they are not

apparent without searching through the generated source. Such unprocessed

bytecode can go unnoticed when compiling, since only comments are output for

these situations. The code in Figure 11 is also missing a close square bracket (])

in the array index for the “runnables” variable. It is unknown whether the missing

bracket is a side-effect of the decompilation errors or a separate issue.

20

runnables[i = new Runnable() {
 /* Error */
 public void run() {
 // Byte code:
 // 0: aload_0
 // 1: getfield 16
 org/lgna/project/virtualmachine/VirtualMachine$3:this$0
 Lorg/lgna/project/virtualmachine/VirtualMachine;
 // 4: aload_0
 // 5: getfield 18
 org/lgna/project/virtualmachine/VirtualMachine$3:val$owner
 Lorg/lgna/project/virtualmachine/Frame;
 // 8: invokevirtual 30
 org/lgna/project/virtualmachine/VirtualMachine:pushCurrentThread
 (Lorg/lgna/project/virtualmachine/Frame;)V
 // 11: aload_0
 // 12: getfield 16
 org/lgna/project/virtualmachine/VirtualMachine$3:this$0
 Lorg/lgna/project/virtualmachine/VirtualMachine;

… More bytecode details follow, but were omitted for brevity …
 }
}

Figure 11: Result when bytecode cannot be interpreted

• JD-GUI appears to have issues determining if a variable is already defined in the

current scope, and often declares variables multiple times within the same scope.

This can lead to a time-consuming process of removing the duplicate declarations

to enable to decompiled source to be compiled. Figure 12 contains an example from

the org.lgna.project.ast.Element class in which the “value” variable is declared

multiple times within the same variable scope.

Object value;
Object value;
if (valueClsName.equals("")) {
 value = null;
} else {
 Class valueCls = ReflectionUtilities.getClassForName(valueClsName);
 if (valueCls.isArray()) {
 Object value;
 if (boolean[].class == valueCls) {
 value = binaryDecoder.decodeBooleanArray();
 } else {
 Object value;
 if (byte[].class == valueCls) {

Figure 12: Example of duplicate variable declarations

21

• Certain bytecode sequences result in the generation of improperly decoded for-

each loops, as exhibited by the code from the org.lgna.project.

ProgramTypeUtilities class shown in Figure 13. The outer loop is decoded

improperly, while the first two inner loops appear correct. The third and final

inner loop seems to have been intermingled and confused with the outer loop.

Also note the invalid sequence “???” used in situations where a variable name

would typically occur. A corrected version of the generated code is shown in

Figure 14.

public static void sanityCheckAllTypes(Project project)
{
 for (
 Iterator localIterator1 =
 project.getNamedUserTypes().iterator();
 localIterator1.hasNext();
 ???.hasNext()
) {
 NamedUserType type = (NamedUserType)localIterator1.next();
 for (NamedUserConstructor constructor : type.constructors) {
 assert (constructor.getDeclaringType() == type) : type;
 }
 for (UserMethod method : type.methods) {
 assert (method.getDeclaringType() == type) : type;
 }
 ??? = type.fields.iterator();
 continue;
 UserField field = (UserField)???.next();
 assert (field.getDeclaringType() == type) : type;
 }
}

Figure 13: Example of an improperly decompiled for-each loop

public static void sanityCheckAllTypes(Project project) {
 for (NamedUserType type : project.getNamedUserTypes()) {
 for (NamedUserConstructor constructor : type.constructors) {
 assert (constructor.getDeclaringType() == type);
 }
 for (UserMethod method : type.methods) {
 assert (method.getDeclaringType() == type);
 }
 for (UserField field : type.fields) {
 assert (field.getDeclaringType() == type);
 }
 }
}

Figure 14: Corrected Figure 13 code with proper for-each loop usage

22

• In some instances, such as methods overloaded multiple times, some required

typecasts are omitted. Figure 15 shows example code from the org.lgna.project.ast.

AbstractType class illustrating a missing typecast. The first getDeclaredField

method invokes a two-parameter overload of getDeclaredField with a null value for

the first parameter. Since multiple overloaded methods of that name taking two

parameters exist, and they only differ by the type of the first parameter, a compiler

could not unambiguously resolve the reference without an explicit cast.

public F getDeclaredField(String name) {
 return getDeclaredField(null, name);
}

public F getDeclaredField(AbstractType<?, ?, ?> valueType, String name) {
 F rv = null;
 for (F field : getDeclaredFields()) {
 if (
 (field.getName().equals(name)) &&
 ((valueType == null) || (field.getValueType().equals(valueType)))
) {
 rv = field;
 break;
 }
 }
 return rv;
}

public F getDeclaredField(Class<?> valueCls, String name) {
 return getDeclaredField(JavaType.getInstance(valueCls), name);
}

Figure 15: Example of omission of required typecast

• When an anonymous class instantiation is performed as part of a return statement,

JD-GUI omits the return keyword. This is illustrated in Figure 16, which contains

an example from the code JD-GUI generates for the org.lgna.project.ast.

JavaConstructor class. The typecast expression within the if statement is not a valid

Java statement as defined in section 14.8 of the JLS. It is clear from the remaining

code that the method should return the result of the expression, and the return

keyword should have been specified before the typecast.

23

public static JavaConstructor getInstance(
 ConstructorReflectionProxy constructorReflectionProxy
) {
 if (constructorReflectionProxy != null) {
 (JavaConstructor)mapReflectionProxyToInstance
 .getInitializingIfAbsent(
 constructorReflectionProxy,
 new InitializingIfAbsentMap.Initializer() {
 public JavaConstructor initialize(
 ConstructorReflectionProxy key
) {
 return new JavaConstructor(key, null);
 }
 }
);
 }
 return null;
}

Figure 16: Example of missing return keyword

• In some cases where a static property declaration includes an initializer, the

initialization code will be missing. As seen in the Figure 17 code sample from the

org.lgna.project.ast.JavaConstructor class, the static property declaration for

mapReflectionProxyToInstance is incomplete since it is missing an expression for

computing the initial value following the equal sign. The correct declaration should

be assigned to the result of Maps.newInitializingIfAbsentHashMap().

public class JavaConstructor
 extends AbstractConstructor
{
 private static final
 InitializingIfAbsentMap<ConstructorReflectionProxy, JavaConstructor>
 mapReflectionProxyToInstance = ;

Figure 17: Example of invalid initialization of static properties

• Certain assertions are not decoded properly, as illustrated by Figure 18 from the

class org.lgna.project.reflect.ClassInfo. Instead of generating code using the assert

keyword, JD-GUI outputs an if statement referencing a synthetic class property

named $assertionsDisabled that was generated by the Java compiler when the

original source code was compiled. Since the property is synthetic and not defined

within the code, the Java compiler will emit an undefined variable reference error

24

for the decompiled code. A correct interpretation of the assert is shown in Figure

19.

this.cls = Class.forName(this.clsName);

if ((!$assertionsDisabled) && (this.cls == null)) {
 throw new AssertionError(this.clsName);
}

Figure 18: Example of incorrect assertion decompilation

this.cls = Class.forName(this.clsName);

assert (this.cls !:= null) : this.clsName;

Figure 19: Code from Figure 18 with corrected assertion

• If a java.lang.Enum subclass is encountered with abstract methods, each instance

of the subclass (the enumeration values) must implement all of the abstract

methods. With JD-GUI, such abstract enumerations are not decompiled properly.

This is shown in the example code of Figure 20, extracted from the class org.

lgna.project.ast.ArithmeticInfixExpression. The decompiled code declares the

Operator enum as abstract, which is invalid per section 8.9 of the Java Language

Specification (JLS) [52] which states that enumerations are implicitly final.

Section 8.9.2 of the JLS also requires that enumeration members implement the

abstract methods declared in the enumeration definition, yet the example code

contains no such implementations. Figure 21 illustrates how the code should have

been decompiled. The abstract keyword is no longer used in the enum definition

and each of the individual members provide definitions for the abstract methods

declared by the enumeration subclass.

25

public static abstract enum Operator {
 PLUS,
 MINUS,
 TIMES,
 REAL_DIVIDE,
 INTEGER_DIVIDE,
 REAL_REMAINDER,
 INTEGER_REMAINDER;

 public abstract Number operate(Number n1, Number n2);
 abstract void appendJava(JavaCodeGenerator generator);
}

Figure 20: Example of incorrectly decompiled enum with abstract methods

public static enum Operator {
 PLUS {
 @Override
 public Number operate(Number leftOperand, Number rightOperand) {
 assert (leftOperand != null) : this;
 assert (rightOperand != null) : this;
 // … Implementation of the method here …
 }

 @Override
 void appendJava(JavaCodeGenerator generator) {
 generator.appendChar('+');
 }
 },
 MINUS {
 // … Implementation of abstract methods here …
 },
 // And so on for and TIMES, REAL_DIVIDE, INTEGER_DIVIDE,
 // REAL_REMAINDER, and INTEGER_REMAINDER…
 ;

 public abstract Number operate(Number n1, Number n2);
 abstract void appendJava(JavaCodeGenerator generator);
}

Figure 21: Corrected decompilation of the code from Figure 20

• When decompiling a for loop with an unknown control variable name, JD-GUI

often uses the generic variable name “i”, even if a variable of the same name is

already declared in the same scope. This prevents compilation of such code due to

the redefinition, and in some cases may also result in undesired updates of the

original variable.

26

• JD-GUI will generate import statements in the same source file for multiple inner

classes that have the same class name. Multiple imports for classes with the same

name are not permitted by the Java compiler, since such code would cause the

imported classes to be ambiguous. An import for the enclosing class should be used

instead. In the cases where such import statements are generated by JD-GUI, it

appears they can be safely removed, since the actual references to the inner classes

are qualified with the enclosing class’s name.

CFR (Class File Reader)

Since so many deficiencies were identified with the source code generated by JD-GUI,

alternative decompilers were sought as alternatives. Despite there being several Java

decompiler projects in existence, only a small number of them have been maintained over

the years with support for newer versions of Java. One of the most promising of those

projects is the CFR [4] (short for Class File Reader) project by Lee Benfield. However,

like JD-GUI, several issues were encountered using CFR as well, some of which are

detailed below:

• Some bytecode sequences could not be decompiled by CFR. This is illustrated in

the code from the org.lgna.project.ast.StaticAnalysisUtilities class shown in Figure

22.

27

private static String getConventionalIdentifierName(
 String name, boolean cap
) {
 rv = "";
 isAlphaEncountered = false;
 N = name.length();
 i = 0;
 while (i < N) {
 c = name.charAt(i);
 if (!Character.isLetterOrDigit(c)) ** GOTO lbl20
 if (!Character.isDigit(c)) ** GOTO lbl14
 if (isAlphaEncountered) ** GOTO lbl15
 rv = String.valueOf(rv) + "_";
 rv = String.valueOf(rv) + c;
 isAlphaEncountered = true;
 ** GOTO lbl21
lbl14: // 1 sources:
 isAlphaEncountered = true;
lbl15: // 2 sources:
 if (cap) {
 c = Character.toUpperCase(c);
 }
 rv = String.valueOf(rv) + c;
 cap = Character.isDigit(c);
 ** GOTO lbl21
lbl20: // 1 sources:
 cap = true;
lbl21: // 3 sources:
 ++i;
 }
 return rv;
}

Figure 22: CFR output for a method it could not decompile

• Some code generated by CFR appears unnecessarily complex or unintuitive. This

may be a result of potentially literal translation of certain compiler optimizations,

as the example from the org.lgna.project.ast.AbstractType class in Figure 23

shows. A few items appear to be suspicious with this translation, including: use

of a mix of || and && in the same logical expression without explicit grouping,

multiple logical negations in an expression that could be expressed more

succinctly if negated, and use of break outside an if statement. Figure 24 lists the

more readable version of the same code produced by JD-GUI. Compared to code

from Figure 23, the code shows a more natural grouping and use of logical

operations and the break is used inside an if statement.

28

for (F field : getDeclaredFields()) {
 if (
 !field.getName().equals(name) ||
 valueType != null &&
 !field.getValueType().equals(valueType)
) {
 continue;
 }
 rv = field;
 break;
}

Figure 23: Example of unintuitive code generated by CFR

for (AbstractField field : this.getDeclaredFields()) {
 if (
 (field.getName().equals(name)) &&
 ((valueType == null) || (field.getValueType().equals(valueType)))
) {
 rv = field;
 break;
 }
}

Figure 24: JD-GUID output for same for-each loop illustrated in Figure 23

• CFR also adds extraneous imports for classes from the decompiled class’s package.

Since the Java compiler automatically imports classes from the same package as

the class being compiled, such imports are superfluous and simply clutter the code.

3.4 Compiling the Generated Sources

After decompiling all classes in a JAR, the resulting source files should be able to be

compiled back to class files with the same functionality. The compiled class files and other

associated resource files from the original JAR can then be repackaged into a new JAR file

that can be used as a drop-in replacement for the original. However, that task is easier stated

than accomplished.

Determining the Compilation Class Path

Most, if not all, of the Alice 3 JAR files contain classes that are interdependent with other

classes from different JAR files. These dependencies may be with classes from an external

3rd party library or from an internal Alice library. To properly compile a source file, those

29

other classes must be available to the Java compiler. This is accomplished by providing the

compiler with a class path – a listing of the directories and JAR files that contain the classes

the compiler should be aware of when compiling. Determining the correct class path to use

for compiling the decompiled sources required more detective work.

For version 3.1 of Alice, this class path could be found in a file named “Alice.ini” found

in the root Alice 3 program folder. This file contained multiple entries of the form

“classpath.1=some path” with the number following “classpath.” being incremented for

each entry, and “some path” referring to a path or JAR to add to the classpath. Each entry

could be extracted from the file and combined manually to create a class path for the Java

compiler.

With the release of Alice 3.2, the application directory structure was reorganized, a new

installer, install4j [28], was used, and the class path was no longer exposed in such an

obvious manner. Along with using install4j, its associated launcher exe4j was used to

generate a native executable for launching Alice. This new launcher embeds the class path

into the executable itself, requiring it to be manually extracted. Luckily, the class path is

embedded in clear text, and can be manually identified and extracted using a text editor.

An alternative method to determine a quick and dirty class path is to simply pass the

paths of all of the JAR files contained with the “ext” and “lib” subdirectories in the Alice

application folder. While this method will not guarantee the JAR files will be loaded in the

same order as is used when launching Alice 3 normally, it should not be a problem unless

more than one of the loaded JAR files define classes with the same package and name.

Since that is uncommon, and does not occur within the libraries Alice 3 utilizes, it is a

generally safe method to employ. Examples of how to construct such a class path are

illustrated in Figure 25 as a Windows batch file and as a Bash shell script in Figure 26.

30

SETLOCAL EnableDelayedExpansion
SET ALICE_DIR="C:\Program Files\Alice 3"

SET CLASSPATH=

FOR /f "tokens=*" %%F in ('dir /b /s %ALICE_DIR%\ext*.jar') DO (
 SET CLASSPATH=!CLASSPATH!;%%F
)
FOR /f "tokens=*" %%F in ('dir /b /s %ALICE_DIR%\lib*.jar') DO (
 SET CLASSPATH=!CLASSPATH!;%%F
)

SET CLASSPATH=%CLASSPATH:~1%

Figure 25: Windows batch syntax for deriving class path

Set the following as appropriate for the target operating system
This example uses the default path for a Linux installation
ALICE_DIR=~/Alice3

CLASSPATH=
for FILE in `find "$ALICE_DIR"/{ext,lib} -name "*.jar"`; do
 CLASSPATH=$CLASSPATH:$FILE
done
CLASSPATH=${CLASSPATH:1}

Figure 26: Bash script syntax for deriving class path

File Organization and Script for Compilation

After decompiling with JD-GUI, all of the decompiled source files were placed in a “src”

subdirectory, retaining the original package directory hierarchy. A “resources” directory

was also created, and populated with all non-class files from the original JAR. The resource

files include any image, license, configuration or other files originally packaged in the JAR

that did not have the “.class” extension, and which were not placed under the top-level

META-INF folder.

After this directory structure was created, a script was derived to simplify invoking the

Java compiler. Since this portion of the project was performed using a Windows PC, a

batch script was created for this task. The script first cleans any existing output class files

from a previous run, then constructs a listing of source files by finding all Java files under

“src”. Next, it builds a class path from the listing of JAR files within the “lib” and “ext”

subfolders in the Alice program directory. The discovered source files are then compiled

by “javac” using the derived class path, with the compiled classes placed into a subfolder

31

named “_classes”. Finally, the resource files found in the “resources” folder are copied into

the “_classes” folder, and the result is then assembled into a JAR file by invoking the “jar”

command.

@ECHO OFF
SETLOCAL EnableDelayedExpansion
SET ALICE_DIR="C:\Program Files\Alice 3"
SET JAR_NAME=ast-0.0.1-SNAPSHOT

%~d0
cd %~dp0

IF EXIST _classes rmdir /S/Q _classes
mkdir _classes

IF EXIST source_files rm source_files
dir /s /b src*.java > source_files

SET CLASSPATH=
FOR /f "tokens=*" %%F in ('dir /b /s %ALICE_DIR%\ext*.jar') DO (
 SET CLASSPATH=!CLASSPATH!;%%F
)
FOR /f "tokens=*" %%F in ('dir /b /s %ALICE_DIR%\lib*.jar') DO (
 SET CLASSPATH=!CLASSPATH!;%%F
)
SET CLASSPATH=%CLASSPATH:~1%

javac -d _classes ^
 -encoding UTF-8 ^
 -sourcepath src ^
 @source_files 1>javac-output.txt 2>&1

type javac-output.txt

xcopy resources* _classes /E /Q /Y

jar cf %JAR_NAME%.jar -C _classes .

Figure 27: Windows batch file used to compile generated source files

Effectiveness of Decompilers for Integrating Finch Support

By utilizing a decompiler such as JD-GUI or CFR, a great deal of insight can be gained

about the structure and organization of the classes and code within a Java program such as

Alice 3. However, since such decompilers are often unable to properly decompile certain

bytecode sequences, they are of somewhat limited use. While it would in theory be possible

to decompile all of Alice 3’s internal library JARs, such decompilation would require quite

a large effort.

32

In the course of the project, the single Alice 3 JAR file named “ast-0.0.1-

SNAPSHOT.jar” was decompiled using JD-GUI, and all of the syntax issues introduced

by the decompiler were corrected. Additionally, all of the methods which could not be

decompiled by JD-GUI were decompiled using CFR and re-integrated into the sources

generated by JD-GUI. In the end, all of the issues preventing compilation within the

selected library were found to be correctable, a new JAR was created from the generated

classes, and it was found to work as a replacement for the original library within Alice 3.

The result of the experiment to create a JAR from the modified decompiled files served

as a proof of concept. However, there are more considerations that need to be made. For

example, what would the time investment be to completely recompile Alice 3, and is it

necessary to do so in order to accomplish the goals of the project? Given that the chosen

library was one of the smaller libraries in Alice 3, containing only 207 classes, and the fact

that it required nearly five hours to successfully resolve all of the compilation issues within

that one library, it was projected that it would take at least an additional 150 hours to

successfully decompile, correct and rebuild all 4,666 of the internal Alice classes. In

addition, it is not known whether there would be more decompilation problems

encountered with the other libraries which cannot be so easily resolved.

Luckily, it is not necessary to decompile all of Alice to integrate new functionality into

it. It would suffice to update a small number of classes, perhaps as few as a single class, as

long as the modified classes can be successfully loaded into Alice along with the rest of

the original classes and the modifications result in the exposure of Finch functionality

within the Alice 3 interface. However, before any classes can be modified it must first be

determined which classes would be the most appropriate to target. One method to

determine the appropriate classes is through direct analysis of the source code generated

through decompilation. Another method is to utilize a different type of utility that allows

one to examine the internal workings of a Java GUI application while it is executing.

33

3.5 It’s a Swinging Interface

The next step in the reverse engineering process was to examine the structure of the

actual user interface and how its components are composed together. The Alice 3 GUI is

constructed using the Java Swing framework, a fact which is advantageous to determining

its inner workings. Several tools exist to facilitate debugging and examining the logical

component hierarchy within Swing GUI programs. The tool used for that purpose during

the course of this project is Swing Explorer [44,70], which provides a simple to use

graphical interface of its own (illustrated in Figure 28).

Figure 28: The Swing Explorer interface

Launching Alice 3 with Swing Explorer

Swing Explorer is a tool for inspecting the internal structure of a Swing-based GUI

application. However, there are a few caveats when using Swing Explorer to examine the

Alice 3 application. Swing Explorer works by utilizing a custom Java agent, which must

be loaded by providing the path to the agent JAR file using the javaagent command line

argument and adding the path to the agent JAR to the bootclasspath, when launching the

java executable to inspect. In addition to specifying the agent, Swing Explorer also requires

34

an interface JAR be added to the classpath and that the class org.swingexplorer.Launcher

be specified as the main class to execute. The main class of the application to be inspected

must be provided as the first argument passed to the Launcher class, along with any other

parameters that would typically be provided to the original main class.

All of the above conditions are usually accomplished by specifying the appropriate

command line arguments to the java executable distributed with the Java Runtime

Environment (JRE). However, since Alice 3 is launched by a separate native executable

launcher, and not using the java executable, the proper arguments to provide to the java

executable to launch Alice without the custom launcher are not immediately obvious. As

mentioned previously in section 3.4, the Alice 3 launcher executable contains information

required to launch Alice, such as the classpath. The executable also contains the name of

the main class and command line arguments passed when the launcher starts Alice 3. That

information can be found in close proximity to the classpath information, and is most easily

located by opening the launcher executable in a text editor and searching for the word

“alice”.

Figure 29: Java arguments embedded in Alice 3 native launcher executable

Figure 29 shows the embedded java command line arguments (selected text) from the

native Windows launcher executable for Alice 3. Several arguments for the java executable

are used, as detailed in Table 3.

35

Parameter Value Purpose

-ea Enables assertions

-Xmx1024m Specifies the maximum size, in bytes, of the memory allocation pool.

-Xorg.alice.ide.rootDirectory=./ Instructs the Alice IDE where to locate files.

-Dswing.aatext=true An old and undocumented method of enabling anti-aliased font

rendering in JDK 1.5 and earlier.
See https://bugs.openjdk.java.net/browse/JDK-6391267

-Djogamp.gluegen.UseTempJarCache=false Disables automated native library loading behavior in JOGL (A Java
OpenGL API binding).
See http://jogamp.org/jogl/doc/userguide/#automatednativelibraryloading

-Dinstall4j.launcherId=24 Launcher Id value used by install4j.

-Dinstall4j.swt=false Instructs install4j that Alice 3 does not use the Standard Widget

Toolkit (SWT) for its GUI.

org.alice.stageide.EntryPoint The main class that launches the Alice 3 IDE.

Table 3: Java arguments extracted from the Alice 3 launcher exe

Based on the information extracted from the Alice 3 launcher, a batch file was

constructed to simplify inspection using the Swing Explorer. Figure 30 provides a listing

of the batch file. To operate correctly, the Swing Explorer agent and GUI JAR files

(swag.jar and swexpl.jar, respectively) must be present in the same parent folder as the

batch file itself. The classpath to use when launching Alice 3 is determined by scanning

the “ext” and “lib” subfolders of the Alice 3 installation folder for JAR files, as described

in section 3.4 above.

36

@ECHO OFF
SET ALICE_DIR=C:\Program Files\Alice 3

SETLOCAL EnableDelayedExpansion
SET BASE=%~dp0

%ALICE_DIR:~0,2%
cd "%ALICE_DIR%"

SET CLASSPATH=%BASE%\swexpl.jar
FOR /f "tokens=*" %%F in ('dir /b /s .\ext*.jar') DO (
 SET CLASSPATH=!CLASSPATH!;%%F
)
FOR /f "tokens=*" %%F in ('dir /b /s .\lib*.jar') DO (
 SET CLASSPATH=!CLASSPATH!;%%F
)

@ECHO ON
java -javaagent:%BASE%\swag.jar -Xbootclasspath/a:%BASE%\swag.jar ^
 -ea -Xmx1024m -Dswing.aatext=true ^
 -Dorg.alice.ide.rootDirectory=./ ^
 -Djogamp.gluegen.UseTempJarCache=false ^
 "-Dinstall4j.launcherId=24" -Dinstall4j.swt=false ^
 org.swingexplorer.Launcher org.alice.stageide.EntryPoint %1

Figure 30: Batch file used for launching Alice 3.3 under Swing Explorer

Runtime Inspection of the Alice 3 GUI

With the proper command line arguments determined and a simple method to launch

Alice 3 to be inspected with Swing Explorer, it is possible to inspect the internal GUI. The

primary goal was to determine how the GUI elements were structured for the procedures

and methods exposed for the various objects within Alice. To accomplish that task, Alice

was launched under Swing Explorer, a new Alice project based on the “Grass” theme was

created, and a “SportsCar” object was added to the scene. Within the Swing Explorer

window, the entry titled “JFrame (Alice 3.2)” was selected for display from the hierarchy

pane. Then the procedure entry GUI element for the SportsCar’s “say” method was selected

in the Swing Explorer display frame (see screenshot in Figure 31 and relevant portion of

view hierarchy in Figure 32).

37

Figure 31: Swing Explorer with SportsCar say method selected

↳ org.lgna.croquet.views.MigPanel
 ↳ org.lgna.croquet.views.ToolPaletteView
 ↳ org.alice.ide.member.views.MethodsSubview
 ↳ org.alice.ide.members.components.templates.ProcedureInvocationTemplate

Figure 32: Subtree of Swing view hierarchy for procedure elements

By examining the tree displayed within Swing Explorer’s view hierarchy pane, the

classes which implement the various composed views become evident. Given those class

names, it was a simple matter to locate the implementations within the various Alice 3 JAR

files. The package names of the classes provide a good indication of which JARs to inspect.

For example, the JAR file named “croquet-0.0.1-SNAPSHOT.jar” is a very likely place to

look for classes under the org.lgna.croquet package, and “ide-0.0.1-SNAPSHOT.jar” is

likely to contain the classes under the org.alice.ide package. In both cases, these initial

guesses proved correct.

Once the Swing view classes were located, the JAR files containing them could be

decompiled, and the resulting source files inspected to determine how the individual

procedure entries were populated. The details of that task are provided in chapter 4.

38

4. Enhancing Alice

Chapter 3 detailed methods for examining the package structure and classes within each

JAR, deriving decompiled source for the classes within those JARs, and directly

determining which classes are utilized within the Alice 3 GUI to present the lists of

procedures and functions available. This chapter will expand upon those findings, with the

first task being to determine how new procedures and functions can be incorporated to

allow interaction with a Finch robot.

4.1 Exposing New Procedures and Functions

Alice 3 only allows user programs to invoke methods on certain types of objects. The

types that are exposed for invocation are determined by calling a method of the org.alice.

stageide.StoryApiConfigurationManager class named

“isInstanceFactoryDesiredForType”, listed in Figure 33. In general, the exposed types

include the Scene object itself, the single Program instance for the project, or an object

which is placed within the 3D scene such as the Camera, a character, a vehicle, a prop, or

a joint property of an object. More specifically, only classes that inherit from org.lgna.

story.SProgram or org.lgna.story.SThing (but not also org.lgna.story.SMarker) are

considered.

public boolean isInstanceFactoryDesiredForType(AbstractType<?, ?, ?> type) {
 if (type.isAssignableTo(SThing.class)) {
 if (type.isAssignableTo(SMarker.class)) {
 return false;
 }
 return true;
 }
 if (type.isAssignableTo(SProgram.class)) {
 return true;
 }
 return false;
}

Figure 33: Source of isInstanceFactoryDesiredForType from StoryApiConfigurationManager

39

The exposed objects have associated methods that can be invoked from a user’s program

to trigger a behavior of the object or retrieve information about the object. Several built-in

methods are predefined for each object type, and user-defined methods can also be defined

as a part of an Alice 3 program.

There are two classifications of methods in Alice 3. Methods which do not generate a

return value are called procedures. Calling a procedure will generally result in changing

the object’s state, such as altering its position, orientation or size in the scene. When a

method returns a value, it is called a function. Most Functions are typically reserved for

retrieving information describing the object’s state, and are nearly always side-effect free

and do not cause any change to the state itself.

As described in 3.5, the structure of the Alice 3 GUI was examined using Swing Explorer

to identify the classes that implement the representation of those procedures and functions.

That examination revealed that the org.alice.ide.members.components.templates.

ProcedureInvocationTemplate and org.alice.ide.member.views.MethodsSubview classes

may be good starting points.

package org.alice.ide.member.views;

import edu.cmu.cs.dennisc.java.awt.font.TextAttribute;
import org.alice.ide.declarationseditor.DeclarationTabState;
import org.alice.ide.member.MethodsSubComposite;
import org.alice.ide.members.components.templates.TemplateFactory;
import org.lgna.croquet.views.AwtComponentView;
import org.lgna.croquet.views.BoxUtilities;
import org.lgna.croquet.views.LineAxisPanel;
import org.lgna.croquet.views.PageAxisPanel;
import org.lgna.project.ast.UserMethod;

public class MethodsSubView<C extends MethodsSubComposite>
 extends PageAxisPanel
{
 public MethodsSubView(MethodsSubComposite composite) {
 super(composite, new AwtComponentView[0]);
 this.setMaximumSizeClampedToPreferredSize(true);
 this.setBorder(javax.swing.BorderFactory.createEmptyBorder(0, 8, 12, 0));
 }

 public C getComposite() {
 return (C)super.getComposite();
 }

40

 protected void internalRefresh() {
 super.internalRefresh();
 MethodsSubComposite composite = this.getComposite();
 this.removeAllComponents();
 composite.updateTabTitle();
 for (org.lgna.project.ast.AbstractMethod method : composite.getMethods()) {
 org.lgna.croquet.views.SwingComponentView component;
 org.lgna.croquet.views.DragComponent dragComponent =
 TemplateFactory.getMethodInvocationTemplate(method);
 if (method instanceof UserMethod) {
 UserMethod userMethod = (UserMethod)method;
 DeclarationTabState tabState =
 org.alice.ide.IDE.getActiveInstance().getDocumentFrame().
 getDeclarationsEditorComposite().getTabState();
 org.lgna.croquet.Operation operation =
 tabState.getItemSelectionOperationForMethod(method);
 org.lgna.croquet.views.Hyperlink hyperlink =
 operation.createHyperlink(new TextAttribute[0]);
 hyperlink.setClobberText("edit");
 component = new LineAxisPanel(
 new AwtComponentView[] {
 hyperlink,
 BoxUtilities.createHorizontalSliver((int)8),
 dragComponent
 }
);
 } else {
 component = dragComponent;
 }
 this.addComponent(component);
 }
 }
}

Figure 34: Decompiled source of the org.alice.ide.member.views.MethodsSubView class

The decompiled source for the MethodsSubview class, shown in Figure 34, contains a

likely method named “internalRefresh” which appears to retrieve the available method list

and populate the view with template instances for each match. The “internalRefresh”

method retrieves the list by invoking “getMethods” on the org.alice.ide.member.

MethodsSubComposite value originally provided to the constructor when the

MethodsSubview instance was created.

41

Figure 35: org.alice.ide.member.MethodsSubComposite subclasses in Alice 3

Figure 35 lists the MethodsSubComposite subclasses identified within Alice 3. Of

particular interest are the classes outlined with a black border, as it is only those three which

contain concrete implementations of “getMethods”. The first class, org.alice.ide.member.

UserMethodsSubComposite, appears to be specifically related to user-defined methods,

which limits it relevance, since any methods added for Finch functionality should be

exposed as pre-defined methods. The implementation of “getMethods” in the second class,

org.alice.ide.member.FunctionsOfReturnTypeSubComposite, merely returns a list which

was set previously by calling “setMethods”. The third class, org.alice.ide.member.

FilteredJavaMethodsSubComposite, uses a similar implementation, though with the

returned list being set by a call to “sortAndSetMethods”.

A quick search through the code exposed only a single call to “setMethods”, invoked

from the “getByReturnTypeSubComposites” method from the org.alice.ide.member.

FunctionTabComposite class. Performing a similar search for “sortAndSetMethods”

org.alice.ide.member.
MethodsSubComposite

org.alice.ide.member.
UserMethodsSubComposite

org.alice.ide.member.
UserProceduresSubComposite

org.alice.ide.member.
UserFunctionsSubComposite

org.alice.ide.member.
FunctionsOfReturnTypeSubComposite

org.alice.ide.member.
FilteredJavaMethodsSubComposite

org.alice.stageide.member.
JointFunctionsComposite

org.alice.stageide.member.
AddListenerProceduresComposite

org.alice.ide.member.
NameFilteredJavaMethodsSubComposite

org.alice.ide.member.
NameFilteredJavaProceduresComposite

org.alice.ide.member.
NameFilteredJavaFunctionsComposite

org.alice.ide.member.
UnclaimedJavaMethodsComposite

42

revealed three calls, all from the “getSubComposites” method of org.alice.ide.member.

MemberTabComposite. Since inspection of the FunctionTabComposite class showed it to

be a subclass of MemberTabComposite, it was decided to focus first on the

MemberTabComposite base class and its “getSubComposites” method, the code of which

is listed in Figure 36.

public List<MethodsSubComposite> getSubComposites() {
 LinkedList<MethodsSubComposite> rv = Lists.newLinkedList();
 LinkedList<JavaMethod> javaMethods = Lists.newLinkedList();

 InstanceFactory instanceFactory =
 IDE.getActiveInstance().getDocumentFrame().
 getInstanceFactoryState().getValue();
 if (instanceFactory != null) {
 AbstractType type = instanceFactory.getValueType();
 while (type != null) {
 if (type instanceof NamedUserType) {
 NamedUserType namedUserType = (NamedUserType)type;
 UserMethodsSubComposite userMethodsSubComposite =
 this.getUserMethodsSubComposite(namedUserType);
 rv.add(userMethodsSubComposite);
 } else if (type instanceof JavaType) {
 JavaType javaType = (JavaType)type;
 for (JavaMethod javaMethod : javaType.getDeclaredMethods()) {
 if (
 !this.isAcceptable(javaMethod) ||
 !MemberTabComposite.isInclusionDesired(javaMethod)
) continue;
 javaMethods.add(javaMethod);
 }
 }
 if (!type.isFollowToSuperClassDesired()) break;
 type = type.getSuperType();
 }
 }
 if (rv.size() > 0) {
 rv.add(SEPARATOR);
 }

43

 if (!"sort alphabetically".equals(this.getSortState().getValue())) {
 for (
 FilteredJavaMethodsSubComposite potentialSubComposite :
 this.getPotentialCategorySubComposites()
) {
 LinkedList<JavaMethod> acceptedMethods = Lists.newLinkedList();
 ListIterator<JavaMethod> methodIterator =
 javaMethods.listIterator();
 while (methodIterator.hasNext()) {
 JavaMethod method = methodIterator.next();
 if (!potentialSubComposite.isAcceptingOf(method)) continue;
 acceptedMethods.add(method);
 methodIterator.remove();
 }
 if (acceptedMethods.size() <= 0) continue;
 potentialSubComposite.sortAndSetMethods(acceptedMethods);
 rv.add(potentialSubComposite);
 }
 }

 LinkedList<MethodsSubComposite> postSubComposites =
 Lists.newLinkedList();
 for (
 FilteredJavaMethodsSubComposite potentialSubComposite :
 this.getPotentialCategoryOrAlphabeticalSubComposites()
) {
 LinkedList<JavaMethod> acceptedMethods = Lists.newLinkedList();
 ListIterator<JavaMethod> methodIterator = javaMethods.listIterator();
 while (methodIterator.hasNext()) {
 JavaMethod method = methodIterator.next();
 if (!potentialSubComposite.isAcceptingOf(method)) continue;
 acceptedMethods.add(method);
 methodIterator.remove();
 }
 if (acceptedMethods.size() <= 0) continue;
 potentialSubComposite.sortAndSetMethods(acceptedMethods);
 postSubComposites.add(potentialSubComposite);
 }

 if (javaMethods.size() > 0) {
 UnclaimedJavaMethodsComposite unclaimedJavaMethodsComposite =
 this.getUnclaimedJavaMethodsComposite();
 unclaimedJavaMethodsComposite.sortAndSetMethods(javaMethods);
 rv.add(unclaimedJavaMethodsComposite);
 }
 rv.addAll(postSubComposites);
 return rv;
}

Figure 36: Decompiled org.alice.ide.member.MemberTabComposite’s getSubComposites method

The “getSubComposites” method builds a list of MethodsSubComposite instances

through four separate phases. The first phase determines the lists of user-defined methods

and pre-defined methods which can be considered. The user-defined methods are added to

the result immediately, while the pre-defined methods are filtered further in the following

44

steps. The second phase of the process only occurs if not sorting alphabetically, and filters

the pre-defined methods to consider by calling “isAcceptingOf” on each item returned by

the abstract “getPotentialCategorySubComposites”. Each sub-composite which matched

one or more pre-defined methods is then added to the result. The third phase, which always

executes, is similar to the second, but iterates over the result of calling

“getPotentialCategoryOrAlphabeticalSubComposites” and the matched sub-composites

are added after the fourth phase is completed. If any unclaimed pre-defined methods

remain, the fourth phase simply calls “getUnclaimedJavaMethodsComposite” and

populates the resulting composite with the remaining methods.

Since only the first phase of the process involves actually determining which methods

are considered for the remaining steps, the methods it invokes must be followed further. If

the value type retrieved from the instance factory derives from org.lgna.project.ast.

JavaType, “getDeclaredMethods” is called to determine the type's pre-defined methods.

The identified methods are ultimately those exposed for the type through the Alice user

interface. Inspection of the JavaType class reveals the value returned by

“getDeclaredMethods” is evaluated lazily, as shown in Figure 37.

this.methods = new Lazy<List<JavaMethod>>() {
 protected List<JavaMethod> create() {
 Class cls = JavaType.this.classReflectionProxy.getReification();
 if (cls != null) {
 LinkedList methods = Lists.newLinkedList();
 HashSet<Method> methodSet = null;
 List<MethodInfo> methodInfos = ClassInfoManager.getMethodInfos(cls);
 if (methodInfos != null) {
 methodSet = new HashSet<Method>();
 for (MethodInfo methodInfo : methodInfos) {
 try {
 Method mthd = methodInfo.getMthd();
 if (mthd == null) continue;
 JavaType.handleMthd(mthd, methods);
 methodSet.add(mthd);
 continue;
 }
 catch (RuntimeException mthd) {
 // empty catch block
 }
 }
 }

45

 Method[] arrmethod = cls.getDeclaredMethods();
 int mthd = arrmethod.length;
 int n = 0;
 while (n < mthd) {
 Method mthd2 = arrmethod[n];
 if (methodSet == null || !methodSet.contains(mthd2)) {
 JavaType.handleMthd(mthd2, methods);
 }
 ++n;
 }
 for (JavaMethod method : methods) {
 Method sttr;
 ValueTemplate valueTemplate;
 JavaMethod setter;
 Method mthd3 = method.getMethodReflectionProxy().getReification();
 GetterTemplate propertyGetterTemplate =
 mthd3.getAnnotation(GetterTemplate.class);
 if (
 propertyGetterTemplate == null ||
 (setter =
 ((sttr = PropertyUtilities.getSetterForGetter(mthd3)) != null
 ? JavaMethod.getInstance(sttr).getLongestInChain()
 : null)
) == null ||
 (valueTemplate = mthd3.getAnnotation(ValueTemplate.class)) == null
) continue;
 JavaMethod m = setter;
 while (m != null) {
 JavaMethodParameter parameter0 = m.getRequiredParameters().get(0);
 parameter0.setValueTemplate(valueTemplate);
 m = m.getNextShorterInChain();
 }
 }
 return Collections.unmodifiableList(methods);
 }
 return Collections.emptyList();
 }
};

Figure 37: Decompiled source of the org.lgna.project.ast.JavaType methods initialization

The process of initializing the method list for the JavaType involves utilizing the org.

lgna.project.reflect.ClassInfoManager class to read cached method information in a custom

binary format from a ZIP named “/org/alice/stageide/apis/org/lgna/story/classinfos.zip”

embedded in the ide-0.0.1-SNAPSHOT.jar and then also using reflection to determine

additional instance methods available from the class. The first step, while interesting,

seems unnecessary and overly complicated since it will never add any method information

beyond that determined in the next step. The second step of the process performs direct

runtime reflection on each public and private method of the class itself, adding any

additional methods that are found. Since all of the class’s defined methods are examined

by this process, replacing an existing class with a new implementation that provides

additional methods will result in those newly defined methods being recognized by Alice.

46

Regardless of the method enumeration process used, each method is filtered through

“handleMthd”, listed in Figure 38, to determine whether it should be included in the result.

The primary test performed ensures that the method has either public or protected access.

If either condition is met, the method will be added to the list of reported methods for the

JavaType instance.

private static void handleMthd(Method mthd, List<JavaMethod> methods) {
 int modifiers = mthd.getModifiers();
 if (
 JavaType.isMask(modifiers, Modifier.PUBLIC) ||
 JavaType.isMask(modifiers, Modifier.PROTECTED)
) {
 JavaMethod methodDeclaredInJava = JavaMethod.getInstance(mthd);
 if (mthd.isAnnotationPresent(MethodTemplate.class)) {
 MethodTemplate methodTemplate = mthd.getAnnotation(MethodTemplate.class);
 if (
 methodTemplate.visibility() == Visibility.PRIME_TIME &&
 !methodTemplate.isFollowedByLongerMethod()
) {
 JavaMethod longer = methodDeclaredInJava;
 Method _mthd = mthd;
 while ((_mthd = JavaType.getNextShorterInChain(_mthd)) != null) {
 JavaMethod shorter = JavaMethod.getInstance(_mthd);
 if (!_mthd.isAnnotationPresent(MethodTemplate.class))
 continue;
 MethodTemplate shorterMethodTemplate =
 _mthd.getAnnotation(MethodTemplate.class);
 if (!shorterMethodTemplate.isFollowedByLongerMethod())
 break;
 longer.setNextShorterInChain(shorter);
 shorter.setNextLongerInChain(longer);
 longer = shorter;
 }
 }
 }
 methods.add(methodDeclaredInJava);
 }
}

Figure 38: Decompiled source of org.lgna.project.ast.JavaType’s handleMthd method

Additional processing may also be performed when the method has an annotation of type

org.lgna.project.annotations.MethodTemplate. If the annotation specifies a “visibility”

value of Visibility.PRIME_TIME and its “isFollowedByLongerMethod” flag is false, then

a chain of methods with the same name will be constructed, each of which must also be

assigned a MethodTemplate annotation and match the parameter signature of the

previously matched overload minus the last parameter. The method chain processing hints

that multiple method overloads with the same name may be exposed within Alice 3 in some

way, however, that behavior was not exploited for this project.

47

Once the methods are determined for the JavaClass instance, processing continues within

the MemberTabComposite “getSubComposites” method (Figure 36). Each method

returned is examined, and two additional tests are performed to determine whether the

methods will actually be exposed through the UI. The first test is to invoke the

“isAcceptable” method declared by the MemberTabComposite class. Since “isAcceptable”

is abstract in MemberTabComposite, the implementing subclasses were examined to

determine what the actual behavior will be. Four subclasses of MemberTabComposite exist

which provide an implementation of the “isAcceptable” method:

1. org.alice.ide.member.FunctionTabComposite

2. org.alice.ide.member.ProcedureTabComposite

3. org.alice.ide.member.UserFunctionsSubComposite

4. org.alice.ide.member.UserProceduresSubComposite

The first two subclasses are specific to pre-defined functions and procedures, and the last

two pertain to user-defined functions and procedures. Both FunctionTabComposite and

UserFunctionsSubComposite provide the same implementation of the “isAcceptable”

method, simply returning the result of calling “isFunction”, shown in Figure 39, on the

AbstractMethod instance being tested.

public boolean isFunction() {
 if (this.getReturnType() != JavaType.VOID_TYPE) {
 return true;
 }
 return false;
}

Figure 39: Decompiled source of org.lgna.project.ast.AbstractMethod's "isFunction"

The ProcedureTabComposite implementation of “isAcceptable” is very similar, in that

it simply returns the result of calling “isProcedure”, shown in Figure 40, on the

AbstractMethod instance being tested.

48

public boolean isProcedure() {
 if (this.isFunction()) {
 return false;
 }
 return true;
}

Figure 40: Decompiled source of org.lgna.project.ast.AbstractMethod's "isProcedure"

In UserProceduresSubComposite, the “isAcceptable” implementation is very slightly

different. It contains an additional check to reject any static method named “main”, as

illustrated in Figure 41.

protected boolean isAcceptable(AbstractMethod method) {
 if (method.isStatic() && "main".equals(method.getName())) {
 return false;
 }
 return method.isProcedure();
}

Figure 41: Decompiled source of org.alice.ide.member.UserProceduresSubComposite’s

“isAcceptable” method

Returning to the MemberTabComposite “getSubComposites” method (Figure 36), if

“isAcceptable” evaluates to true, the next filtering step invokes the “isInclusionDesired”

static method. The “isInclusionDesired” method, listed in Figure 42, rejects all static and

non-public methods or fields, as well as members whose “getVisibility” methods return an

org.lgna.project.annotations.Visibility enumeration instance that is not equal to Visibility.

PRIME_TIME.

protected static boolean isInclusionDesired(AbstractMember member) {
 if (
 !(member instanceof AbstractMethod && ((AbstractMethod)member).isStatic()) &&
 !(member instanceof AbstractField && ((AbstractField)member).isStatic())
) {
 if (member.isPublicAccess() || member.isUserAuthored()) {
 Visibility visibility = member.getVisibility();
 return (
 visibility == null ||
 visibility.equals((Object)Visibility.PRIME_TIME)
);
 }
 }
 return false;
}

Figure 42: Decompiled source of org.alice.ide.member.MemberTabComposite’s “isInclusionDesired”

49

The values passed from “getSubComposites” to “isInclusionDesired” are always

instances of org.lgna.project.ast.JavaMethod. Since JavaMethod always returns false from

its “isUserAuthored” method, only methods with public access are accepted. The

implementation of “getVisibility” for JavaMethod, shown in Figure 43, retrieves the

visibility value from any associated MethodTemplate annotation of the method.

public Visibility getVisibility() {
 Method mthd = this.methodReflectionProxy.getReification();
 if (mthd != null && mthd.isAnnotationPresent(MethodTemplate.class)) {
 return mthd.getAnnotation(MethodTemplate.class).visibility();
 }
 return null;
}

Figure 43: Decompiled source of org.lgna.project.ast.JavaMethod’s “getVisibility”

Annotations, Exposed

Throughout the course of the investigation, it became apparent that the Alice code

utilizes several different annotations, listed in Table 4, to indicate how particular classes,

methods and fields should be exposed and manipulated within the Alice 3 interface. Since

the MethodTemplate annotation was also encountered earlier when examining org.lgna.

project.ast.JavaType’s “getDeclaredMethods” (in both cases it was used to filter method

visibility), it was further investigated to determine how and where the annotation is applied

within the Alice code.

Annotation classes in package “edu.cmu.cs.dennisc.java.lang”
Class Name Use

ParameterAnnotation Applied to a method parameter to indicate that the parameter is a
varargs style array. Only two uses of this annotation exist in the Alice
3.3 source. One in org.lgna.story.Font’s constructor, and the other in
org.lgna.common.DoTogether’s “invokeAndWait” method.

Annotation classes in package “org.lgna.project.annotations”
Class Name Use

AddEventListenerTemplate Applied to a method to indicate that the purpose of the method is to
add an event listener. Only methods within the org.lgna.story.SScene
class have this annotation applied to them. This annotation should be
applied in addition to a MethodTemplate annotation.

50

ArrayTemplate Applied to an array producing method to specify the length of the
returned array. While code exists to extract the length if such an
annotation is assigned, no methods in Alice 3.3 have this annotation
applied to them.

ClassTemplate Applied to a class or interface to provide additional information
regarding how the class or interface should be utilized, such as whether
or not to expose a parent class within the Alice 3 interface. For
example, parent class enumeration is disabled for org.lgna.story.event.
AbstractEvent, org.lgna.story.SProgram, and org.lgna.story.SThing.

ConstructorTemplate Applied to a constructor method to specify constructor visibility. This
annotation is only applied to constructors within the org.lgna.story.
AudioSource class.

FieldTemplate Applied to class fields to indicate visibility within the Alice 3 interface
and provide a method name hint. Appears to be primarily applied to
joint properties.

GetterTemplate Applied to a getter method to specify whether the value returned is
persistent or not. In Alice, a getter method takes no parameters, returns
a value, and has a name starting with “get” or “is” (if returning a
boolean). This annotation should be applied in addition to a
MethodType annotation, and does not appear to be required for all
getters.

MethodTemplate Applied to a method to indicate visibility within the Alice 3 interface
and to specify whether the method should be considered for addition to
an overload chain of same-named methods. No uses of the latter
functionality were found in the Alice 3 code.

ResourceTemplate Applied to an interface to specify the model class type of the resource
described by the interface, in addition to whether it describes a top-
level resource (Biped, Flyer, Prop, Quadruped, Slitherer, Swimmer, or
Transport). For example, the org.lgna.story.resources.
TransportResource specifies a modelClass of org.lgna.story.
STransport.

ValueTemplate Applied to either a method parameter or getter to specify an org.lgna.
project.annotations.ValueDetails enumeration. Used in the following
classes in the org.lgna.story package: AudioSource, Color, SGround,
SModel, SRoom, SScene, STurnable.

Table 4: Annotation classes defined in the Alice codebase

In each case where the MethodTemplate annotation is applied to a method within the

Alice codebase, it is currently used for one of three purposes. The first use, in which the

visibility attribute is set to Visibility.COMPLETELY_HIDDEN, is to mark a method as

not exposed to the user for use in their Alice program. The org.lgna.story.SScene class

contains several examples of this type of usage, such as the

“removeSceneActivationListener” method shown in Figure 44.

51

@MethodTemplate(visibility=Visibility.COMPLETELY_HIDDEN)
public void removeSceneActivationListener(SceneActivationListener listener)
{
 this.implementation.removeSceneActivationListener(listener);
}

Figure 44: Example of a MethodTemplate annotation used to prevent method exposure

The second application of the MethodTemplate annotation, in which the visibility

attribute is set to Visibility.TUCKED_AWAY, applies the same logic as the first,

essentially indicating a method should not be displayed to the user. The difference in the

visibility attribute may be an indication that these methods may be exposed indirectly via

a separate interface in Alice, such as the scene setup interface. An example of this use is

illustrated by the “setName” method of the org.lgna.story.SThing class, shown in Figure

45.

@MethodTemplate(visibility=Visibility.TUCKED_AWAY)
public void setName(String name) {
 this.getImplementation().setName(name);
}

 Figure 45: Example of using Visibility.TUCKED_AWAY to prevent method exposure

The final application of the MethodTemplate annotation either specifies a visibility of

Visibility.PRIME_TIME or doesn’t specify a visibility value at all, since Visibility.

PRIME_TIME is the default visibility value. In this case, it indicates the method should be

directly exposed in the Alice GUI for use within user programs. This application of the

annotation is used on several methods, such as the “setRadius” method of the org.lgna.

story.SCylinder class, illustrated in Figure 46.

@MethodTemplate
public void setRadius(Number radius, SetRadius.Detail... details) {
 this.implementation.radius.animateValue(
 radius.doubleValue(),
 Duration.getValue(details),
 AnimationStyle.getValue(details).getInternal()
);
}

Figure 46: Example of MethodTemplate annotation indicating method is to be exposed

52

Identifying a Suitable Test Subject

Once the mechanisms by which Alice determines which object types and methods to

expose for use within a user program was understood, it was time to identify a class within

Alice that could be easily extended. Since the intent is to expose new functionality for user

programs to invoke, such a class would need to be a subclass of either org.lgna.story.

SProgram or org.lgna.story.SThing (but not a subclass of org.lgna.story.SMarker). It must

also be possible for the user to easily create new instances of the extended class within their

project code.

While it may seem reasonable to augment the SProgram or SThing classes themselves,

there are some concerns with such an approach. Those classes define several internal

properties and methods, which would need to be re-implemented in any overriding class.

SProgram defines two properties and seven methods to override, and SThing defines 12

methods of its own. Secondly, each of those classes currently have a ClassTemplate

annotation attached which may also need to be replicated identically on the replacement

class. The existing complexity of SProgram and SThing would increase the probability that

future updates to Alice 3 may change their properties in a way that would make the

substituted class incompatible, and require updates to it.

Since it seemed that overriding the SProgram or SThing classes themselves may not be

the most appropriate approach, an alternative subclass needed to be identified. The ideal

class would define no properties or methods of its own, and thereby reduce the risk of

future incompatibility. Alice doesn’t define any subclasses of SProgram, so only

descendants of SThing needed to be examined to find a suitable match.

The org.lgna.story.STransport class was identified as a promising starting point to try

inserting custom Finch-specific methods. It is a base class inherited by all transport object

classes within Alice 3 (e.g. Aircraft, Automobile, Watercraft, etc.). As such, methods added

to STransport can be easily accessed within the Alice 3 interface by simply adding any type

of transport object into the scene. The original implementation of the STransport class,

shown in Figure 47, is very short and adds no new methods to its base class of org.lgna.

story.SJointedModel. These properties are ideal for isolating newly added methods from

53

existing code, thus reducing the interdependency between Alice 3 code and any methods

added for manipulating a Finch robot.

package org.lgna.story;

import org.lgna.story.SJointedModel;
import org.lgna.story.implementation.TransportImp;
import org.lgna.story.resources.TransportResource;

public class STransport
 extends SJointedModel
{
 private final TransportImp implementation;

 public STransport(TransportResource resource) {
 this.implementation = resource.createImplementation(this);
 }

 @Override
 TransportImp getImplementation() {
 return this.implementation;
 }
}

Figure 47: Original decompiled source of org.lgna.story.STransport class

As detailed in “Annotations, Exposed”, the Alice code uses a metadata annotation of

type org.lgna.project.annotations.MethodTemplate to decorate methods which should be

exposed to users within Alice. For the purposes of this project, the parameter-less form was

used to ensure the methods were fully exposed to users. An example of a Finch method as

added to the STransport class is shown in Figure 48.

@MethodTemplate
public void finchSetWheelVelocities(int leftVelocity, int rightVelocity) {
 synchronized (finchLock) {
 getFinch().setWheelVelocities(leftVelocity, rightVelocity);
 }
}

Figure 48: Example of Finch method added to STransport class

4.2 Communicating with the Finch

The initial approach to interacting with the Finch from Alice 3 involved updating

STransport to directly access the Finch Java API [5] distributed as a JAR file.

54

Modifications were made to the STransport class to incorporate several additional methods

for interacting with a Finch, modelled on the API exposed by the Finch library. A private

getFinch() method was added which managed a singleton instance of the edu.cmu.ri.

createlab.terk.robot.finch.Finch class, and that single Finch instance was then used for all

communication with the attached Finch robot.

While this seemed like a straightforward approach, several drawbacks were identified,

including the need to distribute an additional 3rd party JAR library and to inject that JAR

into the Alice 3 classpath. Additional issues were also encountered when attempting to

communicate with the Finch. Any call to a method which interacted with the Finch caused

Alice to become unresponsive.

The initial thought was that there was an issue with improper thread synchronization

being performed with the Alice modifications when accessing the Finch API. However, no

such problems could be identified. The getFinch() singleton initialization code uses a

simple null check inside a synchronized block using a dedicated internal lock object, and

each call to a Finch API method was also synchronized using the same lock object.

It was quickly ruled out that the problem was unique to the Alice modifications, as all of

the sample programs included with the Finch software exhibited the same behavior of

hanging on startup. This behavior was observed for both 32-bit and 64-bit JVMs on the

Windows 7 laptop used as a test machine, although the same modifications run on a Linux

host appeared to work as expected.

The Finch sample programs can be configured to create a log file containing debugging

information regarding the Finch hardware detection process and communication error

results. Examining the log generated when running those programs in Windows revealed

that they were experiencing some sort of issue when attempting to write to the USB port,

since a “Bad File Descriptor” error was being reported. Strangely, it seemed that the Finch

was responding to the first command sent to it, indicating that sending the command to the

Finch actually succeeded, although it was unknown whether the confirmation response

from the Finch was being received properly.

55

USB Debugging with USBPCap

As part of troubleshooting the issues encountered with using the Finch API under

Windows, the raw communication over the USB port between the host computer and the

Finch robot was examined. This was accomplished using a USB packet interception library

for Windows called USBPCap [45] in combination with Wireshark [69] (Figure 49).

Figure 49: Wireshark capturing communication with a Finch robot using USBPcap

The USB architecture from the perspective of the host computer is arranged as a multi-

leveled star topology containing hubs and other devices, and a modern host computer has

several built-in and commonly attached USB devices necessary for property operation (for

example, Wi-Fi adapter, keyboard, mouse, touchpad, audio and video devices, etc.) Since

several devices are attached to the USB bus, and many of those produce copious amounts

of traffic on the bus, utilizing Wireshark to analyze the traffic from a single device like a

Finch posed challenges of its own.

In order to reduce the clutter from all of the other devices, a property of the USB protocol

was leveraged to identify the location of the Finch on the bus. When a new USB device is

attached, it broadcasts a device descriptor packet containing product and vendor IDs which

uniquely identify the type of device. Since a Finch robot identifies itself in the device

56

descriptor exchange with a vendor ID of 0x2354 and a product ID of 0x1111, those ID

values were used to define a Wireshark filter expression to reduce the displayed packets to

only descriptor packets from a Finch. Once those packets were identified, the specific USB

address to which the Finch was connected could be determined by extracting the bus ID

and device address from the headers of the descriptor packets received when the Finch was

attached to the host computer.

With the correct bus and device address in hand, a Wireshark packet filter expression

was applied to filter all applicable packets, and it was verified that the initial command was

indeed sent to the Finch successfully, and that the Finch was returning the proper response.

In fact, analysis of the USB packets being transferred between the host computer and the

Finch robot showed no sign of any issues, as the structure of the packets matched exactly

with the published USB communication protocol [9] of the Finch robot. Data was observed

both being sent to the Finch, and responses being returned back to the host computer.

Down the Rabbit Hole

Since the communication issues did not appear to be a result of hardware failure, the next

logical place to investigate was the Finch Java API itself. Through examination of the Finch

API source code [13], the trail led to an embedded JAR (create-lab-commons-usb-hid.jar)

which is managed under a separate project, Create Lab Commons [12]. Within the Create

Lab Commons JAR, the actual communication with the Finch device on Windows is

performed by a class named edu.cmu.ri.createlab.usb.hid.windows.WindowsHIDDevice.

The WindowsHIDDevice class invokes methods of the edu.cmu.ri.createlab.usb.hid.

windows.Kernel32Library class which uses JNA (Java Native Access) to call native

Windows kernel functions directly to open, read from, and write to USB devices. After

each operation, the code inspects the operating system error code returned by the

“getLastError” function of the com.sun.jna.Native JNA class. If the returned result

indicates a non-zero error code, the Finch API reports the communication as failed.

According to the JNA documentation [51], using “getLastError” to retrieve error status

may be unreliable on some operating systems. The recommended method to determine

57

whether an error was returned is to update the JNA import definitions for the kernel

functions being called to declare them to potentially throw a com.sun.jna.

LastErrorException. Unfortunately, when this method was applied to the Kernel32Library

class, and the JAR file was updated, the same “Bad File Descriptor” errors were thrown.

Thus it seemed it wasn’t the use of that specific API that was to blame.

More testing revealed that while the “getLastError” method returned an error code after

writes to the Finch, the Windows API “writeFile” call itself was actually returning a result

indicating success. If the Finch API code was modified to only inspect the last error code

when “writeFile” returned success, then writes to the Finch succeeded as expected.

Unfortunately, once writes were working better, the same issue occurred when reading the

responses returned by the Finch. The Windows API “readFile” call would return success,

yet the Finch code still checked “getLastError”, received a “Bad File Descriptor” error, and

the program would hang. After applying the same updates to the reading code,

communication with the Finch proceeded reliably and the hanging issue was resolved.

The end result of the debugging and trial-and-error was that two classes within the Create

Lab Commons JAR required updates: edu.cmu.ri.createlab.usb.hid.windows.

WindowsHIDDevice and edu.cmu.ri.createlab.usb.hid.windows.Kernel32Library. A

modified version of the Finch API JAR file was generated which could be used instead of

the JAR file distributed directly from the Finch website. However, maintaining and

distributing a separate fork of the Finch API would increase the complexity of the project.

Even overriding the specific classes within the Finch JAR in the same manner as being

used for Alice could incur a fair amount of maintenance overhead, due to the complexity

of the two classes which required modifications. As such, an alternative Finch

communication method was also examined to determine if it would be more suitable to the

task.

4.3 The BirdBrain Robot Server

An alternative to using the Finch API JAR directly is the BirdBrain Robot Server, which

is maintained and distributed by the producer of the Finch robot, BirdBrain Technologies,

58

LLC. The BirdBrain Robot Server implements an HTTP server which exposes web service

endpoints to use for communicating with a Finch robot connected to the same computer

the server is running on. Since the HTTP protocol is used for all communication with the

server, it can be interacted with from any environment which provides an HTTP client, for

example Snap! and Scratch which use it to interact with a Finch.

Figure 50: The BirdBrain Robot Server user interface

There are some drawbacks to using the BirdBrain Robot Server. It requires a separate

manual installation by users on the machine which the Finch is connected to. Additionally,

the server must be running and responding to requests for an application to communicate

through it to the attached Finch.

There are also several advantages to utilizing an HTTP-based communication proxy

implementation, such as the BirdBrain Robot Server. One such advantage is that there is

no need to distribute the Finch API JAR directly, which simplifies the project packaging

and installation. The Robot Server approach also opens up new possibilities, such as

communicating with a Finch robot connected to a remote computer, instead of being

limited to a direct connection. In fact, were multiple servers available on a network, a single

program could potentially interact with several Finch robots simultaneously. Conversely,

59

it also permits the possibility of multiple client programs accessing sensor information

from or controlling a single Finch robot simultaneously.

While using the BirdBrain Robot Server expands the ability to communicate with a Finch

robot to many applications that have built-in support for performing HTTP requests, Alice

3 does not provide any such innate capability to user programs. To facilitate the HTTP

communication with the server, a new class named FinchHTTP was created and loaded

into Alice via a custom JAR, and the org.lgna.story.STransport class was overridden as

before. The new class exposes an API similar to that provided by the standard Finch Java

API to minimize the modifications required within STransport. Under the hood, the new

class utilizes the standard java.net.HttpURLConnection class for executing the HTTP

requests to the server, which means no additional 3rd party libraries are needed.

The HTTP responses received are parsed by the FinchHTTP class and converted to

appropriate Java values, depending on the type of request performed. The BirdBrain Robot

server provides service endpoints for both sensor input (see Table 5) and controlling output

devices on the Finch and the host computer (see Table 6). In general, sensor value

responses are returned as single items or space-separated lists containing either a numeric,

boolean or string value.

BirdBrain Robot Server Finch Sensor Value Services
Service Path Value Returned
/finch/in/accelerationX X-axis acceleration value read from the Finch's accelerometer, in g's.

/finch/in/accelerationY Y-axis acceleration value read from the Finch's accelerometer, in g's.

/finch/in/accelerationZ Z-axis acceleration value read from the Finch's accelerometer, in g's.

/finch/in/accelerations accelerationX SPACE accelerationY SPACE accelerationZ

(Example: “0.0 0.0 1.07”)

/finch/in/lightLeft Value read from the Finch's left light sensor, ranging from 0 to 100.

/finch/in/lightRight Value read from the Finch's right light sensor, ranging from 0 to 100.

/finch/in/lights lightLeft SPACE lightRight (Example: “55 50”)

/finch/in/orientation "Beak Up" | "Beak Down" | "Level" | "Upside Down" | "Left Wing Down" |

"Right Wing Down"

/finch/in/obstacleLeft "true" | "false"

/finch/in/obstacleRight "true" | "false"

60

/finch/in/obstacles obstacleLeft SPACE obstacleRight (Example: “true false”)

/finch/in/temperature Value read from the Finch's temperature sensor, in degrees Celsius.

/poll Listing of all current sensor values.

NOTE: All “/finch” services may return "null" if the server does not detect a connected Finch robot.

Table 5: BirdBrain Robot Server Finch Sensor Value Services

BirdBrain Robot Server Finch Control Services
Service Path Parameters Expected
/finch/out/motor leftSpeed “/” rightSpeed

Values range from 0 to 100. (Example: “/out/motor/100/-100”)

/finch/out/buzzer frequencyHz “/” durationMillis (Example: “/out/buzzer/440/250”)

/finch/out/led red “/” green “/” blue

Values range from 0 to 100. (Example: “/out/led/100/0/0”)

/reset_all Turns off all motors, buzzers, and LEDs on the connected Finch.

/speak “The text to output using speech synthesis” (Example: “/speak/I am a Finch”)

NOTE: All “/finch” services may return "null" if the server does not detect a connected Finch robot.

Table 6: BirdBrain Robot Server Finch Control Services

Operating System-specific Issues

After implementing the new FinchHTTP class, and retrofitting the org.lgna.story.

STransport class to use it, the issues previously encountered with Finch communication

were no longer experienced within Alice on Windows. However, while the BirdBrain

Robot Server resolved issues experienced under Windows, its use presented new

challenges on another operating system. On OS X systems, it responded very slowly to

requests and caused sporadic behavior within Alice when the BirdBrain Robot Server was

not the currently active application. This was identified as a result of a power-saving feature

built into the operating system called App Nap introduced in OS X Mavericks.

App Nap causes background applications to be scheduled for very little and infrequent

CPU time, with the assumption that if they are not the foreground application, they will not

require fast response times or have large processing requirements. For a server application

like the BirdBrain Robot Server, which should serve requested content quickly, this is an

undesirable behavior. Fortunately, OS X provides the ability for users to disable App Nap

61

on a per-application basis. When App Nap is disabled for the BirdBrain Robot Server, the

delays and unreliability previously experienced when Alice was communicating with it

were no longer a problem.

Unsupported Finch Functionality

While the BirdBrain Robot Server does provide support for a significant portion of the

functionality provided by the edu.cmu.ri.createlab.terk.robot.finch.Finch class from the

Finch Java API, there are some minor features which have not been implemented. These

missing features include the ability to read the shaken or tapped status from the Finch

accelerometer, as well as support for playing an audio tone or sound file on the computer

the Finch is connected to.

The capability to produce sound through the computer’s speakers is already incorporated

into Alice. As a result, the server’s lack of support was not considered a large deficiency.

However, supporting the detection of when a Finch is tapped or shaken is an unfortunate

loss of functionality. Without that ability users have fewer possibilities to leverage the

Finch an interactive controller than they otherwise would.

One hypothesis for why this support was not included is that it may be related to how

the BirdBrain Robot Server continually polls the Finch for status updates, even when no

client is requesting data. Since the Finch’s internal accelerometer will reset its shaken and

tapped event flags after each poll, the status is very transient could be easily lost. Were the

status of these events to be stored in internal server state as Boolean values as they are

returned by the Finch, a similar behavior of resetting the state would likely be required

each time the values were read from the server. Such a side-effecting operation for a state

read operation would be inappropriate for a server which may potentially have multiple

simultaneous clients that desire to know whether a shake or tap occurred since the last time

they queried the status.

 In an attempt to address this limitation, a pull request [32] was submitted to the

BirdBrain Robot Server project on GitHub. The pull request adds the capability to report

shaken and tapped events for a Finch in a manner which fully supports multiple clients

https://github.com/BirdBrainTechnologies/BirdBrainRobotServer

62

accurately reading the event. To accomplish this, timestamps are updated in the server state

each time that polling of the Finch’s status indicates that a shake or tap event occurred.

When a client queries one of the services provided by the server for the status of one of the

events, the server responds with the timestamp of the most recent event of that type. The

client can then compare the received timestamp to the timestamp it received from a prior

request for the event status. If the two timestamps differ, then the requested event has

occurred and the client can react accordingly. As of the time of this writing, the submitted

pull request has not yet been accepted into the master branch of the BirdBrain Robot Server.

4.4 Supporting New Releases of Alice 3: Augmenting the classpath

During the course of the project, several new releases of Alice 3 were made available.

When the project began, Alice 3.1.81 was the most recent release. Alice 3.1 utilized a file

named “Alice.ini” in the root installation folder to specify the classpath entries provided to

the JRE when launching Alice. To augment the classpath in Alice 3.1, it was as simple as

updating the “Alice.ini” file to contain the desired entries.

With the release of Alice 3.2, the graphical installer was switched to use install4j. Along

with the new installer, the method for updating the classpath when launching Alice 3 also

changed. With install4j, the default classpath is embedded differently for each supported

operating system. For example, on Windows, the classpath is embedded in the launcher

executable, while on Linux it is constructed by the shell script used to launch Alice.

Fortunately, install4j supports a mechanism to adjust the classpath at runtime beyond that

specified when the installation package was constructed, without bypassing the install4j

launcher. Sadly, the manner in which the install4j support is implemented varies between

each supported operating system.

On Windows and Linux, install4j will look for a file named “Alice 3.vmoptions” in the

root installation path. If the file is found, it will be parsed and entries within it can append

or prepend items into the classpath before Alice 3 is launched. Of primary interest is the

ability to prepend entries to the classpath, since that permits overriding of classes.

Prepending an entry can be accomplished by specifying “-classpath/p” directive in the file.

63

While this seems simple enough, the interpretation of entries varies between the two

different operating systems. On Windows, install4j supports expansion of an environment

variable named EXE4J_EXEDIR containing the absolute path to the launcher executable.

Using that environment variable, the absolute path to the injected JAR file can specified,

regardless of the current working directory. An example of a Windows vmoptions file is

shown in Figure 51.

-classpath/p ${EXE4J_EXEDIR}ext\finch4alice\finch4alice.jar

Figure 51: Example of a Windows install4j vmoptions file

On Linux, install4j does not support expansion of the EXE4J_EXEDIR variable, and

there is no equivalent. Fortunately, when launching Alice 3 on Linux, the working directory

always appears to be set to the directory containing the launcher script, so using a relative

path for the Finch 4 Alice JAR works as desired. A Linux vmoptions file is illustrated in

Figure 52.

Another difference between Windows and Linux is that the file path separators differ.

For Windows, the semicolon character is used to separate different path elements, while

for Linux, the path separator is the colon character. For this project, the difference in

separator character wasn’t significant, since only one item was prepended to the classpath.

If multiple JARs needed to be injected, for example if the Finch Java API JAR had been

used, a path separator would be needed.

-classpath/p ext/finch4alice/finch4alice.jar

Figure 52: Example of a Linux install4j vmoptions file

To further complicate matters, install4j on OS X operates slightly differently as well.

Instead of looking for a file named “Alice 3.vmoptions”, it will search for one named

“vmoptions.txt”. Luckily, the OS X version of install4j accepts the same format as the

Linux version, so the file name change is all that is necessary.

64

5. Finch 4 Alice Deployment

Finch 4 Alice [29] is an open source implementation of the concepts explored in the

preceding sections of this report. It is a simple extension to Alice 3 that adds methods for

controlling a Finch robot to all STransport subclass instances. Cross-platform support is

provided out-of-box for the Microsoft Windows, Apple Macintosh OS X, and Linux

operating systems. The Finch 4 Alice source code, documentation and binary downloads

are publicly available on GitHub and licensed under the permissive BSD 2-Clause License

[64]. During the implementation of Finch 4 Alice, several additional tools were utilized

and new challenges were encountered, as detailed in the remainder of this chapter.

5.1 Supporting Multiple Operating Systems

One of the goals of the project was to provide support for all of the operating systems

officially supported by Alice 3. Those include Microsoft Windows, Apple Macintosh OS

X, and varieties of Linux providing a full desktop environment. To accomplish this goal,

care was exercised in the selection of software build and validation tools to ensure that they

provided strong cross-platform support. Automation of complex tasks was also emphasized

in an effort to facilitate contribution and simplify direct use of the project source, if desired.

Additionally, an attempt was made to reduce the amount of software, beyond the base

operating system, that is required to be manually installed on the user’s computer as

prerequisites to successfully build the Finch 4 Alice project.

5.2 Build Automation with Gradle

The primary build automation tool used by the Finch 4 Alice project is Gradle [34],

which provides a flexible, cross-platform, code-configured alternative to other popular

65

Java build tools such as Ant [59] and Maven [60]. Gradle has several attractive features

that led to its selection as the build tool of choice for this project.

The Only Manual Dependency is the JDK

Since Gradle is implemented using JVM languages and packaged in JAR format, it will

run in any environment which has a supported JRE installed. This was particularly useful

for targeting all of the desired operating systems, because a single build tool with a single

configuration can be used, simplifying the implementation of build automation. Some of

the Gradle plugins used by Finch 4 Alice require access to additional tools provided by the

JDK, such as the Java compiler. Since the JDK itself is not available through the automated

dependency mechanism, it must be installed by the user prior to building Finch 4 Alice.

Since the JDK comes with a bundled JRE, it is the only manual dependency that must be

installed by the user.

The Gradle Wrapper

One of the most desirable features of Gradle is the Gradle Wrapper [35], a shell script

that automates the task of downloading a project-specific version of Gradle for executing

the build. Utilizing the Gradle Wrapper relieves the user from the tasks of downloading

and installing Gradle manually and guarantees that the correct version of the build tool is

used. Gradle Wrapper scripts are included in Windows batch format and in unix shell

format for both Linux and OS X.

Configuration through Code

The configuration of Gradle is done through code, which allows for a more expressive

build configuration than XML-configured tools like Ant or Maven. Several reasonably

complicated tasks are performed by the Finch 4 Alice Gradle configuration, such as

detection of the Alice 3 installation path and support for direct installation of Finch 4 Alice

into Alice 3.

66

Dependency Management

Gradle also provides rich dependency management, and takes advantage of existing

infrastructures and public Maven and Ivy repositories to retrieve external dependencies.

Several large public repositories are currently available and offer access to many thousands

of JAR packages which can be configured as project dependencies and automatically

downloaded as part of the project build process.

Plugin Support

A wide variety of Gradle plugins are available to support complex tasks and automate

external tools. Finch 4 Alice utilizes several of these plugins to support operations such as

producing a graphical izpack installer JAR, generate a Windows executable wrapper for

the installer, publish updates to the project GitHub pages, and generate API documentation.

Table 7 provides a listing of the Gradle plugins used by Finch 4 Alice.

Plugin Identifier Version Description

java Standard built-in plugin supporting Java projects

com.bmuschko.izpack 2.1 Automates IzPack installer creation tool

edu.sc.seis.launch4j 2.1.0 Generates a Windows EXE wrapper from a runnable JAR.

org.ajoberstar.github-pages 1.6.0 Publishing automation tasks for updating GitHub Pages

Git repositories.

com.github.ben-manes.versions 0.13.0 Automates the task of checking for new versions of

configured Gradle plugins.

Table 7: Gradle plugins used by Finch 4 Alice

Simple Command Line Interface

When it comes to hands-free build automation and scripting build tools, command line

tools are best suited for the task. They work well in text-based, non-graphical environments

as are often encountered in remote servers with limited memory or CPU requirements.

Executing Gradle tasks is accomplished through short commands, and while several

67

granular tasks are defined for different steps of the build process, a selected task will

automatically execute all prerequisite tasks needed to complete, as illustrated in Figure 53.

Figure 53: Example of executing Gradle 'createExe' task

5.3 Cross-Platform Graphical Installer

Finch 4 Alice can be bundled into a cross-platform graphical installer application to

simplify distribution to end users. To accomplish this, it utilizes the open source IzPack

installer generation tool to generate a runnable JAR file containing the Finch 4 Alice assets.

By default, the installer JAR executes as a windowed, graphical application (as shown in

Figure 54) that walks users step-by-step through the installation process.

68

Figure 54: The Finch 4 Alice graphical installer

The JAR generated by IzPack can be executed directly on all supported operating

systems by using the ‘java’ program directly on the command line, and can also be

launched from a graphical file-browser application in operating systems that have an

appropriate file type mapping that associates JAR files with the Java executable. Such a

file type association is currently configured by default on Macintosh OS X and Ubuntu

Linux, but must be manually associated on Microsoft Windows. Other Linux distributions

may require an association to be configured before the JAR can be launched though the

GUI. Another caveat on Linux systems is that the JAR must have the executable bit set to

permit execution via a file association.

Besides IzPack, several other options were considered for use in generating the installer,

including the open source VAInstall [3], Packlet [36], and Open Installer [49]. However,

none of those alternatives have been actively maintained for several years, nor did any of

them appear to have clear documentation describing their use. As far as Gradle integration,

there were also no existing plugins available to facilitate their use.

69

The commercial products install4j by ej Technologies and InstallBuilder [11] from

BitRock Inc. were also considered. Free licenses for open source projects can be requested

from both vendors [10,26]. Of the two, only install4j has an available Gradle integration

plugin [27], although InstallBuilder can be automated by executing a command line

program directly from within Gradle. Both products provide excellent documentation, and

a wide variety of examples for each can be found by searching the Internet.

IzPack was chosen over the evaluated commercial products for several reasons. Since

Finch 4 Alice is open source software itself, it was deemed important that the entire build

process was comprised of only open source software. IzPack is licensed under the

permissive Apache License, version 2.0, which allows its use in both commercial and non-

commercial software.

A Gradle plugin is available for automating IzPack, and, unlike the commercial

alternatives, the IzPack plugin retrieves all of the software necessary directly from a

dependency repository such as Maven Central [57] or JCenter [37] without needing any

external installation. This helps maintain the simplicity of the build process, by reducing

manual dependencies and processes. In addition, IzPack has been written in Java with a

focus on cross-platform support, targeting all of the operating systems specified by the

Finch 4 Alice requirements. Finally, an active community of developers maintain IzPack,

reasonable documentation is provided to assist with configuration, and multiple

configuration examples and tutorials can be found through an internet search.

Some challenges were encountered using IzPack, however. While the product itself has

a long history, issues were encountered when attempting to use version 5, the most recent

major release. A large amount of the existing documentation and examples were for the

preceding version 4. While version 5 maintained much of version 4’s configuration syntax,

some breaking modifications were introduced that made it somewhat difficult to determine

the correct organization to use.

The most difficult challenge with using IzPack was a result of bugs that prevented

documented features from working as advertised. The Gradle IzPack plugin [47] used by

Finch 4 Alice is a wrapper around the Ant integration task provided as part of IzPack. That

70

Ant plugin provides a null configuration value to IzPack, which was accepted as valid by

version 4, however in version 5.0.6 and earlier a null pointer exception would occur.

A second issue was encountered when attempting to use a configuration with compound

logical condition. While the configuration syntax was documented as supporting logical

AND and OR operations to combine conditions, in practice it resulted in null pointer

exceptions. These errors were due to an oversight in the IzPack code whereby the context

data used by the conditional operator was not assigned before it was read and utilized.

To resolve these issues and permit use of the newest IzPack version, it was decided to

attempt to analyze and contribute corrections back to the IzPack project. The task of

determining the root cause of the encountered bugs was complicated somewhat by the

structure of the IzPack code itself. IzPack makes heavy use of PicoContainer [55], an

inversion of control library for managing dependency injection and object instance

initialization and construction. One of the main tenants of PicoContainer is the idea of

registering instances of particular classes within a container, which will then be provided

indirectly when using that container to construct instances of other classes which depend

on one or more objects of the registered types for initialization. The use of PicoContainer

within IzPack seemed to introduce additional code complexity and reduce code clarity,

causing it to be more difficult to identify and derive a proper solution to the problems faced.

Despite the complexity of the IzPack code, corrections were submitted through two GitHub

pull requests [30,31], and they were reviewed and merged very quickly by the maintainers.

Release 5.0.7 incorporated the submitted updates, and no more major issues were

encountered with the use of IzPack by Finch 4 Alice.

5.4 Platform-Specific Installer Options

In order to facilitate installation of Finch 4 Alice in specific operating systems, two

additional installation packages may be produced.

71

Windows Executable Wrapper

As described in 5.3, IzPack creates an installer in the form of a JAR file. Since Windows

may not be configured to launch JAR files automatically when double-clicked, the Finch

4 Alice project provides a task to create a native Windows executable wrapper using

Launch4j [40]. Like IzPack, Launch4j is invoked through a Gradle plugin, and all

dependencies are retrieved automatically. Despite generating a binary that can only be

executed on Windows, creating the file is supported on all of the targeted operating

systems.

Shell Script Wrapper

As an alternative to the JAR-format installer for Linux and OS X, a task has been

provided for producing a shell script wrapper around the JAR. When executed, the script

locates the installed java binary, through which it then launches the installer JAR embedded

within itself. While this method still requires the user to launch the script through a shell,

it provides a more automated alternative for installing in environments where a file

association is not defined, since it doesn’t require the user to know where the java

executable is installed or how to invoke it.

5.5 API Documentation

Documentation for the Finch 4 Alice API is generated using Javadoc. Gradle tasks are

provided for generating the documentation locally, and for publishing documentation

updates directly to the project’s website. Publishing of the API documentation for releases

is accomplished using the org.ajoberstar.github-pages Gradle plugin, which automates

cloning the GitHub Pages Git repository, copying the API documentation files into place,

and pushing the updates back to GitHub.

72

5.6 Automated Builds and Release Artifact Publishing

The Travis CI [65] continuous integration build service was utilized to ensure that each

update to the Finch 4 Alice project’s code results in a working distribution on supported

operating systems. Whenever a new commit or tag is added the Finch 4 Alice codebase,

Travis CI executes the build in both Linux and OS X environments, and the resulting build

status is displayed as a badge on the Finch 4 Alice website and GitHub page.

Release versions are identified by tagging a specific commit to produce a release from.

After Travis CI successfully builds a release tag, it will publish the generated artifacts back

into GitHub as a release and generate and publish the API documentation to the project’s

GitHub Pages site. As illustrated in Figure 55, the currently published release artifacts

include the generic installer JAR, Windows installer EXE, shell wrapper script, API

documentation, and archived snapshots of the source code.

Figure 55: GitHub Release artifacts of Finch 4 Alice v0.4

5.7 Acquiring Finch 4 Alice

Both source code and release binaries of Finch 4 Alice can be obtained from the project’s

GitHub project, which is located at https://github.com/bradcfisher/finch4alice. The main

project readme provides a wealth of documentation, including compilation instructions for

https://github.com/bradcfisher/finch4alice

73

each of the supported installers. A project website, http://finch4alice.com, was setup using

GitHub pages and provides additional content, including generated API documentation for

each release. To acquire the latest Finch 4 Alice release, visit

https://github.com/bradcfisher/finch4alice/releases/latest.

http://finch4alice.com/
https://github.com/bradcfisher/finch4alice/releases/latest

74

6. Future Work

During the course of the project, some potential opportunities for future work were

identified, some of which may be appropriate as undergraduate projects. This chapter

details several such opportunities.

6.1 Use in Introductory CS Courses

One of the original driving forces behind the conception of the Finch 4 Alice project was

a desire to incorporate more interactive and engaging technologies, such as the Finch, into

existing introductory coursework. Since Alice 3 was already being used for teaching

students programming concepts, the idea of extending its capabilities to the physical world

was compelling.

Now that Finch 4 Alice has made interacting with a Finch robot from an Alice 3 program

a reality, all that remains is to adapt and augment existing curriculum to incorporate its use.

The development of this new classroom material, along with trial implementation and

analysis of its effectiveness could be an opportunity for one or more enterprising students

to undertake.

6.2 Maintenance of the Finch 4 Alice Open Source Project

To remain relevant, the Finch 4 Alice project itself will need to be maintained. This may

be necessary for several reasons. For example, as materials are developed for use in the

classroom, the capabilities of Finch 4 Alice may require tweaking to accommodate new

ideas and interaction paradigms. Addressing feature requests and correcting bugs in an

open source project can provide valuable experience to students.

One future enhancement that could be undertaken would be the implementation of a

continuous integration method with Windows support. The current CI solution, Travis CI,

75

only supports Linux and OS X, and does not currently provide Windows support. As a

result, automatic build and test validation is not currently performed in a Windows

environment when a release build is performed. The use of another CI implementation that

supports Windows builds, such as AppVeyor [2], would help ensure Windows builds

receive the same level of validation as Linux and OS X builds currently do.

Other future maintenance possibilities include ensuring compatibility with future

releases of Alice 3. A future release of Alice may include modified internals that result in

an incompatibility with Finch 4 Alice. Any number of changes could be made to Alice

which would result in Finch 4 Alice not working as expected. For example, since Swing is

essentially deprecated technology, it is conceivable that the existing Swing UI of Alice

could be replaced with a JavaFX implementation at some point. Such an update would

likely involve sweeping updates to Alice that would almost certainly break compatibility.

6.3 Enhancements to the Finch Representation in Alice 3

One of the first thoughts that came to mind when evaluating the idea of integrating Alice

and the Finch robot was that having the on-screen representation of the Finch react and

move in response to commands and/or the orientation of the Finch. The initial thought is

that there could be one or more options that could control this behavior to enable or disable

it as desired by the user.

Another tweak to how the Finch is represented within Alice could be to inject a custom

model to represent the Finch instead of extending all STransport subclasses. This same

concept was implemented in Finch Dreams, a fork of Alice 2. With Finch 4 Alice, the idea

would be to provide a lighter-weight way of extending base Alice with a new Finch model

instead of attempting to distribute a competing Alice version.

6.4 Enhance Alice with Functionality Beyond Finch

Another possibility that could be explored could be that of extending the concepts

explored by the Finch 4 Alice project to create a generic mechanism for loading new

capabilities into Alice 3 via injecting new JAR files into the classpath and exposing new

76

objects and methods in Alice. There are many limits to what Alice programs can currently

do, and enhancing those capabilities could provide potential benefit to the Alice

community. Some possible uses for such a mechanism could be to provide support for an

HTTP communication library, enable interaction with user input devices beyond keyboards

and mice, or even as a means to create and distribute new Alice 3 models beyond the ones

shipped in the base product.

This type of enhancement to Alice is unlikely to be simple or intuitive to accomplish

with the current release of Alice 3. The ability to invoke such functionality is limited to the

methods exposed in the Alice interface. As the Finch 4 Alice project has shown, Alice

currently only exposes the methods associated with objects that have a representation in

the scene. While overriding an existing Alice class to expose new methods is possible, as

shown by Finch 4 Alice, it is not likely to be a viable approach when the concept is

extended to multiple custom extensions that may all expect to override the same classes

with differing implementations.

77

REFERENCES

[1] Stephanos Androutsellis-Theotokis, Diomidis Spinellis, Maria Kechagia, and
Georgios Gousios, "Open Source Software: A Survey from 10,000 Feet,"
Foundations and Trends® in Technology, Information and Operations
Management, vol. 4, no. 3-4, pp. 187-347, 2011.

[2] Appveyor Systems Inc. (2017, March) Continuous Integration and Deployment
service for Windows developers - AppVeyor. [Online]. https://www.appveyor.com/

[3] Axel von Arnim and VAInstall Contributors. (2016, December) VAInstall
homepage. [Online]. http://vainstall.sourceforge.net/

[4] Lee Benfield. (2016, September) CFR - yet another java decompiler. [Online].
http://www.benf.org/other/cfr/

[5] BirdBrain Technologies, LLC. (2016, August) Finch (Finch API). [Online].
http://www.finchrobot.com/javadoc/edu/cmu/ri/createlab/terk/robot/finch/
Finch.html

[6] BirdBrain Technologies, LLC. (2016, July) Finch Dreams | The Finch. [Online].
http://www.finchrobot.com/software/finch-dreams

[7] BirdBrain Technologies, LLC. (2016, August) Finch Robot | The Finch. [Online].
http://www.finchrobot.com/

[8] BirdBrain Technologies, LLC. (2016, July) Github - BirdBrainRobotServer.
[Online]. https://github.com/BirdBrainTechnologies/BirdBrainRobotServer

[9] BirdBrain Technologies, LLC. (2017, February) USB Protocol | The Finch.
[Online]. http://www.finchrobot.com/learning/usb-protocol

[10] BitRock Inc. (2016, December) BitRock InstallBuilder : Open Source Licenses.
[Online]. https://installbuilder.bitrock.com/open-source-licenses.html

[11] BitRock Inc. (2016, December) Cross-Platform BitRock InstallBuilder:
Multiplatform Installer Tool. [Online]. https://installbuilder.bitrock.com/index.html

78

[12] Carnegie Mellon CREATE Lab. (2017, March) CMU-CREATE-Lab/commons-
java: Handy, general purpose Java classes. [Online]. https://github.com/CMU-
CREATE-Lab/commons-java

[13] Carnegie Mellon CREATE Lab. (2017, March) CMU-CREATE-Lab/finch: Java
libraries and software for the Finch robot. [Online]. https://github.com/CMU-
CREATE-Lab/finch

[14] Carnegie Mellon CREATE Lab. (2016, July) CREATE Lab Visual Programmer.
[Online]. http://artsandbots.com/visualprogrammer/

[15] Carnegie Mellon University. (2016, September) A BirdBrain Idea. [Online].
http://www.cmu.edu/homepage/computing/2011/spring/finch.shtml

[16] Carnegie Mellon University. (2016, July) Alice 3 Software - Carnegie Mellon
University. [Online]. https://www.cmu.edu/homepage/computing/2009/winter/
alice-3-software.shtml

[17] Carnegie Mellon University. (2016, July) Alice Support/Help / Alice 3 EULA.
[Online]. http://alice3.pbworks.com/w/page/28830524/Alice%203%20EULA

[18] Carnegie Mellon University. (2016, July) Alice.org. [Online]. http://www.alice.org/

[19] Carnegie Mellon University. (2016, September) Community Robotics, Education
and Technology Empowerment Lab (CREATE Lab). [Online].
http://www.createlab.ri.cmu.edu/

[20] Elliot J. Chikofsky and James H. Cross, "Reverse Engineering and Design
Recovery: A Taxonomy," IEEE Software, vol. 7, no. 1, pp. 13-17, January 1990.

[21] Cristina Cifuentes and K. John Gough, "Decompilation of Binary Programs,"
Software: Practice and Experience, vol. 25, no. 7, pp. 811-829, 1995. [Online].
https://en.wikipedia.org/wiki/Decompiler

[22] Creative Commons. (2016, July) Attribution-ShareAlike 3.0 United States (CC BY-
SA 3.0 US). [Online]. https://creativecommons.org/licenses/by-sa/3.0/us/

[23] Tebring Daly, "Influence of Alice 3: Reducing the Hurdles to Success in a Cs1
Programming Course," Denton, TX, USA, Ph.D. Dissertation 2013.

[24] Wanda Dann, Dennis Cosgrove, Don Slater, Dave Culyba, and Steve Cooper,
"Mediated Transfer: Alice 3 to Java," in Proceedings of the 43rd ACM Technical

79

Symposium on Computer Science Education, Raleigh, North Carolina, USA, 2012,
pp. 141-146. [Online]. http://doi.acm.org/10.1145/2157136.2157180

[25] Dr. Dobb's Journal. (2016, August) Innovative Alice 3 Educational Software
Released. [Online]. http://www.drdobbs.com/innovative-alice-3-educational-
software/219400476

[26] ej Technologies. (2016, December) ej Technologies: install4j Open Source
Licenses. [Online]. https://www.ej-technologies.com/buy/install4j/openSource

[27] ej Technologies. (2016, December) install4j Help : Using install4j With Gradle.
[Online]. http://resources.ej-technologies.com/install4j/help/doc/cli/gradle.html

[28] ej Technologies. (2016, October) Multi-Platform Java Installer Builder - install4j.
[Online]. https://www.ej-technologies.com/products/install4j/overview.html

[29] Brad Fisher. (2016, December) Finch 4 Alice. [Online].
http://www.finch4alice.com/

[30] Brad Fisher. (December, 2016) IZPACK-1170 - fix issues with Izpack ant task not
working - Pull Request #408. [Online]. https://github.com/izpack/izpack/pull/408

[31] Brad Fisher. (2016, December) IZPACK-1301 - Ensure that installData is set on
nested conditions before use - Pull Request #409. [Online].
https://github.com/izpack/izpack/pull/409

[32] Brad Fisher. (March, 2017) Pull Request #3 ·
BirdBrainTechnologies/BirdBrainRobotServer. [Online].
https://github.com/BirdBrainTechnologies/BirdBrainRobotServer/pull/3

[33] Google. (2016, July) Blockly | Google Developers. [Online].
https://developers.google.com/blockly/

[34] Gradle Inc. (2016, December) Gradle Build Tool | Modern Open Source Build
Automation. [Online]. https://gradle.org/

[35] Gradle Inc. (2016, December) The Gradle Wrapper. [Online].
https://docs.gradle.org/current/userguide/gradle_wrapper.html

[36] Michael Hartmeier. (2016, December) Packlet installer tool. [Online].
http://packlet.sourceforge.net/

80

[37] JFrog Ltd. (2016, December) Bintray jcenter - Maven, Gradle, Ivy, SBT, Groovy,
Clojure central repositor. [Online]. https://bintray.com/bintray/jcenter

[38] Caitlin Kelleher. (2016, September) Storytelling Alice. [Online].
http://www.alice.org/kelleher/storytelling/index.html

[39] Gregor Kiczales et al., "Aspect-oriented Programming," in ECOOP'97 — Object-
Oriented Programming: 11th European Conference Proceedings, Jyväskylä,
Finland, October 1997, pp. 220-242.

[40] Grzegorz Kowal. (2017, January) Launch4j- Cross-platform Java executable
wrapper. [Online]. http://launch4j.sourceforge.net/

[41] Tom Lauwers, "Aligning Capabilities of Interactive Education Tools to Learner
Goals," Carnegie Mellon University, Pittsburgh, PA, PhD Thesis CMU-RI-TR-10-
09, 2010.

[42] Tom Lauwers, Illah Nourbakhsh, and Emily Hamner, "CSbots: Design and
Deployment of a Robot Designed for the CS1 Classroom," in Proceedings of the
40th ACM Technical Symposium on Computer Science Education, Chattanooga,
TN, USA, 2009, pp. 428-432.

[43] Lifelong Kindergarten Group, MIT Media Lab. (2016, July) Scratch - Imagine,
Program, Share. [Online]. https://scratch.mit.edu/

[44] Jussi Malinen. (2016, October) Github - Swing Explorer 1.6.0. [Online].
https://github.com/robotframework/swingexplorer

[45] Tomasz Moń. (2016, January) USBPCap. [Online]. http://desowin.org/usbpcap/

[46] Barbara Moskal, Deborah Lurie, and Stephen Cooper, "Evaluating the
Effectiveness of a New Instructional Approach," in Proceedings of the 35th
SIGCSE Technical Symposium on Computer Science Education, Norfolk, Virginia,
USA, 2004, pp. 75-79. [Online]. http://doi.acm.org/10.1145/971300.971328

[47] Benjamin Muschko. (2016, December) bmuschko/gradle-izpack-plugin: Gradle
plugin that provides support for packaging applications for the Java platform via
IzPack. [Online]. https://github.com/bmuschko/gradle-izpack-plugin

81

[48] Illah Nourbakhsh and Tom Lauwers, "Designing the Finch: Creating a Robot
Aligned to Computer Science Concepts," in Proceedings of the First Symposium on
Educational Applications of AI, Atlanta, Georgia, 2010, pp. 1902-1907.

[49] Open Installer Contributors. (2016, December) Open Installer framework for
building cross platform installers. [Online]. https://java.net/projects/openinstaller/

[50] Oracle Corporation. (2016, July) JAR File Overview. [Online].
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html

[51] Oracle Corporation. (2017, March) Native (JNA API) - Project Kenai. [Online].
https://jna.java.net/javadoc/com/sun/jna/Native.html

[52] Oracle Corporation. (2016, September) The Java Language Specification. [Online].
http://docs.oracle.com/javase/specs/jls/se8/html/index.html

[53] Oracle Corporation. (2017, April) The Java Virtual Machine Specification.
[Online]. https://docs.oracle.com/javase/specs/jvms/se7/html/index.html

[54] Igor Pavlov. (2016, July) 7-zip.org. [Online]. http://www.7-zip.org/

[55] PicoContainer Contributors. (2016, December) PicoContainer - home page.
[Online]. http://picocontainer.com/

[56] Nan C. Shu, Visual Programming. New York: Van Nostrand Reinhold, 1988.

[57] Sonatype, Inc. (2016, December) The Central Repository. [Online].
http://search.maven.org/

[58] teamalice. (2016, September) Sourceforge - Storytelling Alice Modification.
[Online]. https://sourceforge.net/projects/storyalice/

[59] The Apache Software Foundation. (2016, December) Apache Ant. [Online].
http://ant.apache.org/

[60] The Apache Software Foundation. (2016, December) Maven - Welcome to Apache
Maven. [Online]. https://maven.apache.org/

[61] The Eclipse Foundation. (2016, October) AspectJ - Bytecode weaving, incremental
compilation, and memory usage. [Online].
https://eclipse.org/aspectj/doc/next/devguide/bytecode-concepts.html

82

[62] The Eclipse Foundation. (2016, October) AspectJ Configuration - Load-Time
Weaving. [Online]. https://eclipse.org/aspectj/doc/next/devguide/ltw-
configuration.html

[63] The Eclipse Foundation. (2016, October) The AspectJ Project. [Online].
https://eclipse.org/aspectj/

[64] The FreeBSD Project. (2016, December) The 2-Clause BSD License. [Online].
https://opensource.org/licenses/BSD-2-Clause

[65] Travis CI, GmbH. (2016, December) Travis CI User Documentation. [Online].
https://docs.travis-ci.com/

[66] University of California at Berkeley. (2016, July) Snap! (Build Your Own Blocks)
4.0. [Online]. http://snap.berkeley.edu/

[67] Wikipedia Contributors. (2016, July) Wikipedia - Alice (Software). [Online].
https://en.wikipedia.org/wiki/Alice_(software)

[68] Wikipedia Contributors. (2016, July) Wikipedia - Application Programming
Interface. [Online].
https://en.wikipedia.org/wiki/Application_programming_interface

[69] Wireshark Contributors. (January, 2016) Wireshark - Go Deep. [Online].
https://www.wireshark.org/

[70] Maxim Zakharenkov. (2016, October) Github - Swing Explorer Source Code.
[Online]. https://github.com/brocchini/swing-explorer

83

Appendix

Disclaimers

The Finch 4 Alice project is not affiliated with either the Finch or Alice 3 projects or their

respective intellectual property holders.

The Finch robot is produced by BirdBrain Technologies LLC. For more information visit

http://www.finchrobot.com/ and http://www.birdbraintechnologies.com/.

Finch 4 Alice interacts with the BirdBrain Robot Server which is covered by a Creative

Commons Attribution-ShareAlike 3.0 Unported License [22].

Alice 2 and Alice 3 are developed by Carnegie Mellon University. More information can

be found at http://www.alice.org/.

Finch 4 Alice BSD 2-Clause License

Finch 4 Alice is released under the BSD 2-Clause License

Copyright (c) 2015, Brad Fisher

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

http://www.finchrobot.com/
http://www.birdbraintechnologies.com/
http://www.alice.org/

84

2. Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	GLOSSARY
	1. Introduction
	1.1 Alice 3
	1.2 The Finch

	2. Project Background
	2.1 Option 1 – Acquire access to the Alice 3 source code
	2.2 Option 2 – Utilize a different visual programming environment
	Finch Dreams
	CREATE Lab Visual Programmer for Finch
	Scratch & Snap!
	Blockly

	2.3 Option 3 – Reverse-engineering of Alice 3

	3. Through the Looking Glass: Hacking Alice 3
	3.1 ZIP Open a JAR
	3.2 Overriding and Enhancing Classes in Java
	Bytecode Weaving with AspectJ
	Replacing a Class in an Existing JAR File
	Provide a new JAR

	3.3 Decompilers Provide a Source
	JD-GUI
	CFR (Class File Reader)

	3.4 Compiling the Generated Sources
	Determining the Compilation Class Path
	File Organization and Script for Compilation
	Effectiveness of Decompilers for Integrating Finch Support

	3.5 It’s a Swinging Interface
	Launching Alice 3 with Swing Explorer
	Runtime Inspection of the Alice 3 GUI

	4. Enhancing Alice
	4.1 Exposing New Procedures and Functions
	Annotations, Exposed
	Identifying a Suitable Test Subject

	4.2 Communicating with the Finch
	USB Debugging with USBPCap
	Down the Rabbit Hole

	4.3 The BirdBrain Robot Server
	Operating System-specific Issues
	Unsupported Finch Functionality

	4.4 Supporting New Releases of Alice 3: Augmenting the classpath

	5. Finch 4 Alice Deployment
	5.1 Supporting Multiple Operating Systems
	5.2 Build Automation with Gradle
	The Only Manual Dependency is the JDK
	The Gradle Wrapper
	Configuration through Code
	Dependency Management
	Plugin Support
	Simple Command Line Interface

	5.3 Cross-Platform Graphical Installer
	5.4 Platform-Specific Installer Options
	Windows Executable Wrapper
	Shell Script Wrapper

	5.5 API Documentation
	5.6 Automated Builds and Release Artifact Publishing
	5.7 Acquiring Finch 4 Alice

	6. Future Work
	6.1 Use in Introductory CS Courses
	6.2 Maintenance of the Finch 4 Alice Open Source Project
	6.3 Enhancements to the Finch Representation in Alice 3
	6.4 Enhance Alice with Functionality Beyond Finch

	REFERENCES
	Appendix
	Disclaimers
	Finch 4 Alice BSD 2-Clause License

